Skip to main navigation menu Skip to main content Skip to site footer

Vol. 23 No. 5 (2024)

Articles

Effects of meta-topolin riboside and meta-methoxy topolin riboside on the in vitro micropropagation of Pyrus communis L.

DOI: https://doi.org/10.24326/asphc.2024.5389
Submitted: June 4, 2024
Published: 2024-11-30

Abstract

The present study aimed to evaluate the effects of new meta-topolin derivatives meta-topolin riboside (mTR) and meta-methoxy topolin riboside (memTR) on the ultiplication and subsequent rooting and ex vitro acclimatization of Pyrus communis L. (‘OHF 333’). The cytokinins mTR and memTR were included in the nutrient medium (0 μM, 3 μM, 6 μM, 9 μM, 12 μM). In plants from three passages of three-week-old cultures grown on different nutrient media, the following parameters were evaluated: multiplication coefficient, fresh (FW) and dry (DW) weight (mg), average length of shoots (mm), average number of leaves, leaf length and width (mm). At the rooting stage, data on the rooting frequency, number of roots per rooted micro-cutting and the length of roots were recorded 18 days after the start of the experiment. In the acclimatized plants, leaf area, FW and DW, and the content of photosynthetic pigments were determined 40 days after the transfer to ex vitro conditions. Gas exchange rate and chlorophyll fluorescence were also evaluated for the control and the variants with 6 and 9 μM mTR and memTR. The plantlets grown on cytokinin-supplemented media showed a higher number of leaves than the control. Plantlets grown on nutrient media with 6 and 12 μM mTR were distinguished by the highest FW and DW. In these variants, the shoots were of the greatest length. The plants grown on medium with 6 μM mTR had the highest number of leaves. Control plants had larger leaves. Тhe highest rooting percentage (70%) was achieved in plantlets grown with 9 μM mTR. A higher ex vitro acclimatization survival rate (76–100%) was found in all plants cultured with mTR or memTR compared to control plants (65%).

References

  1. Abdouli, D., Plačková, L., Doležal, K., Bettaieb, T., Werbrouck, S. (2022). Topolin cytokinins enhanced shoot proliferation, reduced hyperhydricity and altered cytokinin metabolism in Pistacia vera L. seedling explants. Plant Sci., 322, 111360. https://doi.org/10.1016/j.plantsci.2022.111360
  2. Ahmad, N., Strnad, M. (2021). Meta-topolin: a growth regulator for plant biotechnology and agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-9046-7
  3. Amoo, S.O., Finnie, J.F., Van Staden J. (2011). The role of meta-topolins in alleviating micropropagation problems. Plant Growth Regul., 63, 197–206. https://doi.org/10.1007/s10725-010-9504-7
  4. Amoo, S.O., Aremu, A.O., Moyo, M., Sunmonu T.O., Plíhalová, L., Doležal, K., Van Staden, J. (2015). Physiological and biochemical effects of a tetrahydropyranyl-substituted meta-topolin in micropropagated Merwilla plumbea. Plant Cell Tiss. Organ Cult., 121, 579–590. https://doi.org/10.1007/s11240-015-0728-0
  5. Aremu, A.O., Bairu, M.W., Doležal, K., Finnie, J., Staden, V.N. (2012). Topolins: a panacea to plant tissue culture challenges. Plant Cell Tiss. Organ Cult., 108, 1–16. https://doi.org/10.1007/s11240-011-0007-7
  6. AOAC (1990). Official methods of analysis of the Association of Official Analytical Chemists. 15th ed. Arlington. Aygun, A., Dumanoglu, H. (2015). In vitro shoot proliferation and in vitro and ex vitro root formation of Pyrus elaeagrifolia Pallas. Front. Plant Sci., 6, 225. https://doi.org/10.3389/fpls.2015.00225
  7. Bairu, M.W., Jain, N., Stirk, W.A., Doležal, K., Van Staden, J. (2009). Solving the problem of shoot-tip necrosis in Harpagophytum procumbens by changing the cytokinin types, calcium and boron concentrations in the medium. South Afr. J. Bot., 75(1), 122–127. https://doi.org/10.1016/j.sajb.2008.08.006
  8. Bairu, M.W., Kane, M.E. (2011). Physiological and developmental problems encountered by in vitro cultured plants. Plant Growth Regul., 63, 101–103. https://doi.org/10.1007/s10725-011-9565-2
  9. Bairu, М.W., Stirk, W.A., Doležal, K., Van Staden, J. (2007). Optimizing the micropropagation protocol for the endangered Aloe polyphylla: Can meta-topolin and its derivatives serve as a replacement for benzyladenine and zeatin? Plant Cell Tiss. Organ Cult., 90, 15–23. https://doi.org/10.1007/s11240-007-9233-4
  10. Bairu, M.W., Stirk, W.A., Doležal, K., Van Staden, J. (2008). The role of topolins in micropropagation and somaclonal variation of banana cultivars ‘Williams’ and ‘Grand Naine’ (Musa spp. AAA). Plant Cell Tiss. Organ Cult., 95, 373–379. https://doi.org/10.1007/11240-008-9451-4
  11. Baroja-Fernández, E., Aguirreolea, J., Martínková, H., Hanuš, J., Strnad, M. (2002). Aromatic cytokinins in micropropagated potato plants. Plant Physiol. Biochem., 40(3), 217–224. https://doi.org/10.1016/S0981-9428(02)01362-1
  12. Baskaran, P., Chukwujekwu, J.C., Amoo, S.O., Van Staden, J. (2014). Anticholinesterase and mutagenic evaluation of in vitro-regenerated Agapanthus praecox grown ex vitro. In Vitro Cell Dev. Biol. Plant, 50, 271–275. https://doi.org/10.1007/s11627-013-9567-z
  13. Bell, R.L., Scorza, R., Lomberk, D. (2012). Adventitious shoot regeneration of pear (Pyrus spp.) genotypes. Plant Cell Tiss. Organ Cult., 108, 229–236. https://doi.org/10.1007/s11240-011-0034-4
  14. Bogaert I., Van Cauter S., Werbrouck, S., Doležal, K. (2006). New aromatic cytokinins can make the difference. Acta Hortic., 725, 265–270. https://doi.org/10.17660/ActaHortic.2006.725.33
  15. Bolhàr-Nordenkampf, H.R., Öquist, G. (1993). Chlorophyll fluorescence as a tool in photosynthesis research. In:Hall, D.O., Scurlock, J.M.O., Bolhàr-Nordenkampf, H.R., Leegood, R.C., Long, S.P. (eds), Photosynthesis and production in a changing environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1566-7_12
  16. Cheng, T.Y. (1979). Micropropagation of clonal fruit tree rootstocks. Compact Fruit Tree, 12, 127–137.
  17. Chevreau, E., Bell, R. (2005). Pyrus spp. pear and Cydonia spp. quince. In: Litz, R. (ed.). Biotechnology of fruit and nut crops. CABI Publishing, 543–565. https://doi.org/10.1079/9780851996622.054
  18. Chevreau, E., Thibault, B., Arnaud, Y. (1992). Micropropagation of pear. In: Bajaj, Y.P.S. (ed.) Biotechnology in agriculture and forestry, vol. 18. High-Tech and micropropagation. Springer-Verlag, Berlin, Heidelberg, 244–261. https://doi.org/10.1007/978-3-642-76422-6_13
  19. Dimitrova, N., Nacheva, L, Berova, M., (2016). Effect of meta-topolin on the shoot multiplication of pear rootstock OHF-333 (Pyrus communis L.). Acta Sci. Pol., Hort, Cult., 15(2), 43–53.
  20. Goltsev, V.N., Kalaji, H.M., Paunov, M., Bąba, W., Horaczek, T., Mojski, J., Kociel, H., Allakhverdiev, S.I. (2016). Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russ. J. Plant Physiol., 63, 869–893. https://doi.org/10.1134/S1021443716050058
  21. Grira, M., Prinsen, E., Werbrouck, S.P.O. (2023). The effect of topophysis on the in vitro development of Handroanthus guayacan and on its metabolism of meta-topolin riboside. Plants, 12(20), 3577. https://doi.org/10.3390/plants12203577
  22. Holub, J., Hanuš, J., Hanke, E.D., Strnad, M. (1998). Biological activity of cytokinins derived from Ortho- and Meta-Hydroxybenzyladenine. Plant Growth Regul., 26, 109–115. https://doi.org/10.1023/A:1006192619432
  23. Kalaji, M.H., Carpentier, R., Allakhverdiev, S.I., Bosa, K. (2012). Fluorescence parameters as an early indicator of light stress in barley. J. Photochem. Photobiol. B, 112, 1–6.
  24. Kalaji, H.M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I.A., Cetner, M.D., Łukasik, I., Goltsev, V., Ladle, R.J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant, 38, 102. https://doi.org/10.1007/s11738-016-2113-y
  25. Kalaji, M.H., Oukarroum, A., Alexandrov, V., Kouzmanova, M., Brestic, M., Zivcak, M., Samborska, A.I., Cetner, D.M., Allakhverdiev, I.S., Goltsev, V. (2014). Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol. Biochem., 81, 16–25. https://doi.org/10.1016/j.plaphy.2014.03.029
  26. Kalaji, H.M., Račková, L., Paganová, V., Swoczyna, T., Rusinowski, S., Sitko, K. (2018). Can chlorophyll-a fluorescenceparameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? Environ. Exp. Bot., 152, 149–157. https://doi.org/10.1016/j.envexpbot.2017.11.001
  27. Kaviani, B. (2015). Some useful information about micropropagation. J. Ornam. Plants, 5(1), 29–40.
  28. Kaviani, B., Barandan, A., Tymoszuk, A., Kulus, D. (2023). Optimization of in vitro propagation of pear (Pyrus communis L.) ‘Pyrodwarf®(S)’ rootstock. Agronomy, 13(1), 268. https://doi.org/10.3390/agronomy13010268
  29. Li, G., Zhang, Z.-S., Gao, H.-Y., Liu, P., Dong, S.-T., Zhang, J.-W., Zhao, B. (2012). Effects of nitrogen on photosynthetic characteristics of leaves from two different stay-green corn (Zea mays L.) varieties at the grain-filling stage. Can. J. Plant Sci., 92, 671–680. https://doi.org/10.4141/cjps2012-039
  30. Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembrans. Methods Enzymol., 148, 350–382. https://doi.org/10.1016/0076-6879(87)48036-1
  31. Lizárraga, A., Fraga, M., Ascasíbar, J., González, M.L. (2017). In vitro propagation and recovery of eight apple and two pear cultivars held in a germplasm bank. Am. J. Plant Sci., 8(9), 2238–2254. https://doi.org/10.4236/ajps.2017.89150
  32. Lombard, P., Westwood, M. (1987). Pear rootstocks. In: R.C. Rom, R.F. Carlson (eds), Rootstocks for fruit crops. John Wiley & Sons, New York, 145–183.
  33. Lotfi, M., Bayoudh, C., Werbrouck, S., Mars, M. (2020). Effects of meta-topolin derivatives and temporary immersion on hyperhydricity and in vitro shoot proliferation in Pyrus communis. Plant Cell Tiss. Organ Cult., 143, 499–505. https://doi.org/10.1007/11240-020-01935-x
  34. Nacheva, L., Dimitrova, N., Berova, M. (2022). Effect of LED lighting on the growth of micropropagated pear plantlets (Pyrus communis L. OHF 333). Acta Hortic., 1337, 9–16. https://doi.org/10.17660/ActaHortic.2022.1337.2
  35. Nacheva, L., Gercheva, P., Dzhuvinov, V. (2009). Efficient shoot regeneration system from pear rootstock OHF – 333 (Pyrus comunis L.) leaves. Acta Hort., 839, 195–201.
  36. Reed, B.M., DeNoma, J., Wada, S., Postman, J. (2013). Micropropagation of pear (Pyrus sp.). In: Lambardi, M., Ozudogru, E., Jain, S. (eds), Protocols for micropropagation of selected economically-important horticultural Plants. Methods Mol. Biol., 994. https://doi.org/10.1007/978-1-62703-074-8_1
  37. Reed, B.M., Wada, S., DeNoma, J., Niedz, R.P. (2013). Mineral nutrition influences physiological responses of pear in vitro. In Vitro Cell Dev. Biol. Plant, 49, 699–709. https://doi.org/10.1007/s11627-013-9556-2
  38. Rehman, H.U., Gill, M.I.S. (2014). In vitro shoot tip grafting of Patharnakh [Pyrus pyrifolia (Burm F.) Nakai] pear on Kainth rootstock. Veg. Int. J. Plant Res., 27(2), 363–369. https://doi.org/10.5958/2229-4473.2014.00058.5
  39. Ružic, D., Vujovic, T., Nikolić, D., Cerović, R. (2011). In vitro growth responses of the ‘Pyrodwarf’ pear rootstock to cytokinin
  40. types. Rom. Biotechnol. Lett., 16(5), 6630–6637.
  41. Salvi, N., George, L., Eapen, S. (2002). Micropropagation and field evaluation of micropropagated plants of turmeric. Plant Cell Tiss. Organ Cult., 68, 143–151. https://doi.org/10.1023/A:1013889119887
  42. Schansker, G., Tóth, S.Z., Holzwarth, A.R., Garab, G. (2014). Chlorophyll a fluorescence: beyond the limits of the QA model. Photosynth. Res., 120, 43–58. https://doi.org/10.1007/s11120-013-9806-5
  43. Strasser, R.J., Strasser, B.J. (1995). Measuring fast fluorescence transients to address environmental questions: the JIP test. In: Mathis P. (ed.), Photosynthesis: from light to biosphere. Academic Publishers, Dordrecht, Kluwer, 977–980.
  44. Strasser, R.J., Srivastava, A., Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Younus, M., Pathre, U., Mohanty, P. (eds.), Probing photosynthesis: mechanism, regulation and adaptation. Taylor & Francis, London, 443–480.
  45. Stirbet, A. (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Lotfi, M., Mars, M., Werbrouck, S. (2019). Optimizing pear micropropagation and rooting with light-emitting diodes and trans-cinnamic acid. Plant Growth Regul., 88, 173–180. https://doi.org/10.1007/s10725-019-00498-y
  46. Magyar-Tábori, K., Dobránszki, J., Jámbor-Benczúr, E., Bubán, T., Lazányi, J., Szalai, J., Ferenczy, A. (2001). Posteffects of cytokinins and auxin levels of proliferation media on rooting ability of in vitro apple shoots (Malus domestica Borkh.) ‘Red Fuji’. Int. J. Hortic. Sci., 7(3–4), 26–29. https://doi.org/10.31421/IJHS/7/3-4/276
  47. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays for tobacco tissue cultures. Physiol. Plant., 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  48. Nacheva, L., Gandev, S. (2023). Could meta-Topoline improve the multiplication and rooting of micropropagated walnut plants – a case study with ‘Lara’ (Juglans regia L.). Acta Hortic., 1359, 87–94. https://doi.org/10.17660/ActaHortic.2023.1359.10
  49. Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B., 104(1–2), 236–257. https://doi.org/10.1016/j.jphotobiol.2010.12.010
  50. Stirbet, A., Lazár, D., Kromdijk, J., Govindjee (2018). Chlorophyll a fluorescence induction: Can just a one – second measurement be used to quantify abiotic stress responses? Photosynthetica, 56, 86–104. https://doi.org/10.1007/s11099-018-0770-3
  51. Strnad, M., Hanuš, J., Vaněk, T., Kamínek, M., Ballantine, J., Fussell, B., Hanke, D. (1997). Meta-topolin, a highly active aromatic cytokinin from poplar leaves (Populus canadensis Moench, cv. Robusta). Phytochemistry, 45(2), 213–218. https://doi.org/10.1016/0031-9422(96)00816-3
  52. Szopa, A., Ekiert, H. (2012). In vitro cultures of Schisandra chinensis (Turcz.) Baill. (Chinese Mangolia vine) – a potential biotechnological rich source of therapeutically important phenolic acids. Appl. Biochem. Biotechnol., 166, 1941–1948. https://doi.org/10.1007/12010-012-9622-y
  53. Thakur, A., Dalal, R.P.S., Navjot, N. (2008). Micropropagation of pear (Pyrus spp.): a review. Agric. Rev., 29, 260–270.
  54. Werbrouck, S.P., Strnad, M., Van Onckelen, H., Debergh, P.C. (1996). Meta-topolin, an alternative to benzyladenine in tissue culture. Physiol. Plant., 98(2), 291–297. https://doi.org/10.1034/j.1399-3054.1996.980210.x
  55. Wertheim, S., (2002). Rootstocks for European pear: a review. Acta Hortic., 596, 299–309. https://doi.org/10.17660/ActaHortic.2002.596.47
  56. Yeo, D.Y., Reed, B.M. (1995). Micropropagation of three Pyrus rootstocks. HortSci., 30, 620–623.
  57. Yusuf, M.A., Kumar, D., Rajwanshi, R., Strasser, R.J., Tsimilli- Michael, M., Sarin, N.B. (2010). Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim. Biophys. Acta-Bioenergetics, 1797(8), 1428–1438. https://doi.org/10.1016/j.bbabio.2010.02.002
  58. Živčak, M., Olšovská, K., Slamka, P., Galambošova, J., Rataj, V., Shao, H., Brestič, M. (2014). Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency. Plant Soil Environ., 60(5), 210–215. https://doi.org/10.17221/73/2014-PSE

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.