Skip to main navigation menu Skip to main content Skip to site footer

Vol. 23 No. 2 (2024)

Articles

Effect of virus infection on the fruit quality of sour cherry cultivar Łutówka

DOI: https://doi.org/10.24326/asphc.2024.5327
Submitted: January 11, 2024
Published: 2024-04-30

Abstract

A survey was carried out on a commercial sour cherry fruit orchard located in Lublin province in Poland to determine the influence of viruses on the fruit quality of sour cherry cv. Łutówka. Leaf samples from trees of sour cherry cv. Łutówka were tested for Prunus necrotic ringspot virus (PNRSV), Prune dwarf virus (PDV), Little cherry virus 1 (LChV-1), Little cherry virus 2 (LChV-2), Cherry virus A (CVA), Cherry green ring mottle virus (CGRMV), Cherry necrotic rusty mottle virus (CNRMV), Cherry rasp leaf virus (CRLV) and Cherry mottle leaf virus (CMLV) using the RT-PCR technique. The results indicated that PNRSV and PNRSV+CVA infected the samples. PDV, LChV-1, LChV-2, CGRMV, CNRMV, CRLV, and CMLV were not detected in any of the tested sour cherry trees. The effect of virus infection on the chemical composition of sour cherry fruits was investigated. The anthocyanin, total phenolic and vitamin C contents, and antioxidant activity were evaluated. The total phenolic compound, vitamin C contents, and antioxidant activity were significantly higher in PNRSV- and PNRSV+CVA-infected than in virus-free sour cherry fruits. The total anthocyanin content in PNRSV- or PNRSV+CVA-infected fruits was lower than in control trees. To our knowledge, this is the first report in the world about the effect of PNRSV or PNRSV+CVA infection on the anthocyanin compounds, total polyphenolic compounds, vitamin C contents, and the antioxidant activity of sour cherry fruits.

References

  1. Bajet, N.B., Unruh, T.R., Druffel, K.L., Eastwell, K.C. (2008). Occurrence of two little cherry viruses in sweet cherry in Washington State. Plant Dis., 92(2), 234–238. https://doi.org/10.1094/PDIS-92-2-0234 DOI: https://doi.org/10.1094/PDIS-92-2-0234
  2. Barth, C., Moeder, W., Klessig, D.F., Conklin, P.L. (2004). The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol., 134(4), 1784–1792. https://doi.org/10.1104/pp.103.032185 DOI: https://doi.org/10.1104/pp.103.032185
  3. Bilska, K., Wojciechowska, N., Alipour, S., Kalemba, E.M. (2019). Ascorbic acid – the little-known antioxidant in woody plants. Antioxidants, 8(12), 645. https://doi.org/10.3390/antiox8120645 DOI: https://doi.org/10.3390/antiox8120645
  4. Blanco-Ulate, B., Hopfer, H., Figueroa-Balderas, R., Ye, Z., Rivero, R.M., Albacete, A., Pérez-Alfocea, F., Koyama, R., Anderson, M.M., Smith, R.J., Ebeler, S.E., Cantu, D. (2017). Red blotch disease alters grape berry development and metabolism by interfering with the transcriptional and hormonal regulation of ripening. J. Exp. Bot., 68(5), 1225–1238. https://doi.org/10.1093/jxb/erw506 DOI: https://doi.org/10.1093/jxb/erw506
  5. Boom, R., Sol, C.J., Salimans, M.M., Jansen, C.L., Wertheim-Van Dillen, P.M.E., van der Noordaa, J. (1990). Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol., 28(3), 495–503. https://doi.10.1128/jcm.28.3.495-503.1990 DOI: https://doi.org/10.1128/jcm.28.3.495-503.1990
  6. Borowy, A., Chrzanowska, E., Kapłan, M. (2018). Comparison of three sour cherry cultivars grown in Central-Eastern Poland. Acta Sci. Pol. Hortorum Cultus, 17(1), 63–73. https://doi.org/10.24326/asphc.2018.1.6 DOI: https://doi.org/10.24326/asphc.2018.1.6
  7. Cao, J., Jiang, Q., Lin, J., Li, X., Sun, C., Chen, K. (2015). Physicochemical characterisation of four cherry species (Prunus spp.) grown in China. Food Chem., 173, 855–863. https://doi.org/10.1016/j.foodchem.2014.10.094 DOI: https://doi.org/10.1016/j.foodchem.2014.10.094
  8. Chamika Buddhinie, P.K., Nazeera, S., Hewage Sarananda, K., Nimal Punyasiri, P.A. (2017). Effect of papaya ringspot virus infection on the fruit quality of a tolerant papaya variety, ‘Rec Lady’. Asian J. Sci. Technol., 8(10), 5874–5880.
  9. Chen, S., Yu, N., Yang, S., Zhong, B., Lan, H. (2018). Identification of Telosma mosaic virus infection in Passiflora edulis and its impact on phytochemical contents. Virol. J., 15, 168. https://doi.org/10.1186/s12985-018-1084-6 DOI: https://doi.org/10.1186/s12985-018-1084-6
  10. Cho, I.S., Choi, G.S., Choi, S.K., Seo, E.Y., Lim, H.S. (2014). First report of Cherry necrotic rusty mottle virus infecting sweet cherry trees in Korea. Plant Dis., 98(1), 164. https://doi.org/10.1094/PDIS-07-13-0723-PDN DOI: https://doi.org/10.1094/PDIS-07-13-0723-PDN
  11. Cieślińska M., Morgaś, H. (2010). Occurrence and detection of lesser known viruses and phytoplasmas in stone fruit orchards in Poland. Folia Hortic. Ann., 22(2), 51–57. https://doi.org/10.2478/fhort-2013-0159 DOI: https://doi.org/10.2478/fhort-2013-0159
  12. Cropley, R. (1961). Cherry leaf-roll virus. Ann. Appl. Biol., 49(3), 524–529. https://doi.org/10.1111/j.1744-7348.1961.tb03645.x DOI: https://doi.org/10.1111/j.1744-7348.1961.tb03645.x
  13. Czynczyk, A., Karolczak, J., Grzyb, Z.S. (1988). Wzrost i owocowanie dwóch odmian wiśni na siewkach wyselekcjonowanych typów antypki [Growth and yielding of two sour cherry cultivars grafted on selected Mahaleb cherry types]. Pr. Inst. Sadow. Kwiac. ser. A, 28, 23–28.
  14. Demidchik, V. (2015). Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ. Exp. Bot., 109, 212–228. https://doi.org/10.1016/j.envexpbot.2014.06.021 DOI: https://doi.org/10.1016/j.envexpbot.2014.06.021
  15. Desvignes, J.C., Boyé, R., Cornaggia, D., Grasseau, N., Hurtt, S., Waterworth, H. (eds.) (1999). Virus diseases of fruit trees. Diseases due to viroids, viruses, phytoplasmas and other undetermined infectious agents. Centre Technique Interprofessionnel des Fruits et Légumes, Paris, 202 pp.
  16. Egan, M.J., Wang, Z.Y., Jones, M.A., Smirnoff, N., Talbot, N.J. (2007). Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc. Natl. Acad. Sci., 104(28), 11772–11777. https://doi.org/10.1073/pnas.0700574104 DOI: https://doi.org/10.1073/pnas.0700574104
  17. Ferretti, G., Bacchetti, T., Belleggia, A., Neri, D. (2010). Cherry antioxidants: from farm to table. Molecules, 15(10), 6993–7005. https://doi.org/10.3390/molecules15106993 DOI: https://doi.org/10.3390/molecules15106993
  18. Fiore, N., Zamorano, A. (2013). First report of Cherry green mottle virus and Cherry necrotic rusty mottle virus in sweet cherry (Prunus avium) in Chile and South America. Plant Dis., 97(8), 1122. https://doi.org/10.1094/PDIS-01-13-0010-PDN DOI: https://doi.org/10.1094/PDIS-01-13-0010-PDN
  19. Fujiwara, A., Togawa, S., Hikawa, T., Matsuura, H., Masuta, C., Inukai, T. (2016). Ascorbic acid accumulates as a defense response to Turnip mosaic virus in resistant Brassica rapa cultivars. J. Exp. Bot., 67, 4391–4402. https://doi.org/10.1093/jxb/erw223 DOI: https://doi.org/10.1093/jxb/erw223
  20. Gentit, P., Foissac, X., Svanella-Dumas, L., Peypelut, M., Macquaire, G., Candresse, T. (2002). Molecular characterization of foveaviruses associated with the cherry necrotic mottle leaf disease and complete sequencing of an European isolate of cherry green ring mottle virus. Arch. Virol., 147(5), 1033–1042. https://doi.org/10.1007/s00705-001-0715-0 DOI: https://doi.org/10.1007/s00705-001-0715-0
  21. Głowacka, A., Rozpara, E. (2010). Charakterystyka wzrostu i owocowania nowych, niemieckich odmian wiśni w warunkach klimatycznych centralnej Polski [Characterization of the growth and yielding of new German sour cherry cultivars in the climatic conditions of central Poland]. Zesz. Nauk. Inst. Sad. Kwiac., 18, 15–24.
  22. Grzyb, Z.S., Rozpara, E. (2009). Wiśnie: zestaw odmian, technologia uprawy, rynki zbytu, choroby i szkodniki [Sour cherries: cultivars, cultivation technology, sale markets, diseases and pests]. Hortpress, Warszawa, 299–302.
  23. Guidoni, S., Mannini, F., Ferrandino, A., Argamante, N., Di Stefano, R. (1997). The effect of grapevine leafroll and rugose wood sanitation on agronomic performance and berry and leaf phenolic content of a Nebbiolo Clone (Vitis vinifera L.). Am. J. Enol. Vitic., 48, 438–442. https://doi.org/10.5344/ajev.1997.48.4.438 DOI: https://doi.org/10.5344/ajev.1997.48.4.438
  24. Homoki, J.R., Nemes, A., Fazekas, E., Gyémánt, G., Balogh, P., Gál, F., Al-Asri, J., Mortier, J., Wolber, G., Babinszky L., Remenyik, J. (2016). Anthocyanin composition, antioxidant efficiency, and α- amylase inhibitor activity of different Hungarian sour cherry varieties (Prunus cerasus L.). Food Chem., 194, 222–229. https://doi.org/10.1016/j.foodchem.2015.07.130 DOI: https://doi.org/10.1016/j.foodchem.2015.07.130
  25. Horbowicz, M., Kosson, R., Grzesiuk, A., Dębski, H. (2008). Anthocyanins of fruits and vegetables – their occurrence, analysis and role in human nutrition. Veg. Crop. Res. Bull., 68, 5–22. https://doi.org/10.2478/v10032-008-0001-8 DOI: https://doi.org/10.2478/v10032-008-0001-8
  26. Horsáková, J., Sochor J., Krška B. (2013). Assessment of antioxidant activity and total polyphenolic compounds of peach varieties infected with the plum pox virus. Acta Univ. Agric. et Silvic. Mendelianae Brun., 61(6), 1693–1701. http://dx.doi.org/10.11118/actaun201361061693 DOI: https://doi.org/10.11118/actaun201361061693
  27. Isogai, M., Aoyagi, J., Nakagawa, M., Kubodera, Y., Satoh, K., Katoh, T., Inamori, M., Yamashita, K., Yoshikawa, N. (2004). Molecular detection of five cherry viruses from sweet cherry trees in Japan. J. Gen. Plant Pathol., 70, 288–291. https://doi. 10.1007/s10327-004-0129-4 DOI: https://doi.org/10.1007/s10327-004-0129-4
  28. Jadczuk-Tobiasz, E., Bednarski, R. (2007). Wstępna ocena wzrostu owocowania dziesięciu odmian wiśni [Preliminary evaluation of the growth and yielding of 10 sour cherry cultivars]. Zesz. Nauk. Inst. Sad. Kwiac., 15, 17–27.
  29. Jaiswal, N., Singh, M., Dubey, R.S., Venkataramanappa, V., Datta, D. (2013). Phytochemicals and antioxidative enzymes defence mechanism on occurrence of yellow vein mosaic disease of pumpkin (Cucurbita moschata). Biotechnology, 3, 287–295. https://doi.org/10.1007/s13205-012-0100-6 DOI: https://doi.org/10.1007/s13205-012-0100-6
  30. Jakobek L., Šeruga, M., Šeruga, B., Novak, I., Medvidović-Kosanović M. (2009). Phenolic compound composition and antioxidant activity of fruits of Rubus and Prunus species from Croatia. Int. J. Food Sci. Technol., 44(4), 860–868. https://doi.org/10.1111/j.1365-2621.2009.01920.x DOI: https://doi.org/10.1111/j.1365-2621.2009.01920.x
  31. James, D., Jelkmann, W., Upton, C. (1999). Specific detection of cherry mottle leaf virus using digoxigenin-labelled cDNA probes and RT-PCR. Plant Dis., 83(3), 235–239. https://doi.org/10.1094/PDIS.1999.83.3.235 DOI: https://doi.org/10.1094/PDIS.1999.83.3.235
  32. James, D., Mukerji, S. (1993). Mechanical transmission, identification, and characterization of virus associated with mottle leaf in cherry. Plant Dis., 77(3), 271–275. https://doi.org/10.1094/PD-77-0271 DOI: https://doi.org/10.1094/PD-77-0271
  33. Jelínek, L., Dolečková, M., Karabín, M., Hudcová, T., Kotlíková, B., Dostálek, P. (2012). Influence of growing area, plant age, and virus infection on the contents of hop secondary metabolites. Czech J. Food Sci., 30(6), 541–547. DOI: https://doi.org/10.17221/50/2012-CJFS
  34. Jelkmann, W. (1995). Cherry virus A: cDNA cloning of dsRNA, nucleotide sequence analysis and serology reveal a new plant capillovirus in sweet cherry. J. Gen. Virol., 76, 2015–2024. https://doi.org/10.1099/0022-1317-76-8-2015 DOI: https://doi.org/10.1099/0022-1317-76-8-2015
  35. Kalogirou, M. (2012). Antiviral and quality effects of chemical elicitors and Cucumber Mosaic Virus (CMV) infection on tomato plants and fruits. Doctoral dissertation. Cranfield University, 211 pp.
  36. Khoo, G.M., Clausen, M.R., Pedersen, H., Larsen, E. (2011). Bioactivity and total phenolic content of 34 sour cherry cultivars. J. Food Compos. Anal., 24(6), 772−776. https://doi.org/10.1016/j.jfca.2011.03.004 DOI: https://doi.org/10.1016/j.jfca.2011.03.004
  37. Kim, D.O., Heo, H.J., Kim, Y.J., Yang, H.S., Lee, C.Y. (2005). Sweet and sour cherry phenolics and their protective effects on neuronal cells. J. Agric. Food Chem., 53(26), 9921–9927. DOI: https://doi.org/10.1021/jf0518599
  38. Kim, D.O., Padilla-Zakour, O.I. (2004). Jam processing effect on phenolics and antioxidant capacity in anthocyanin-rich fruits: cherry, plum, and raspberry. J. Food Sci. Technol., 69(9), S395–S400. https://doi.org/10.1111/j.1365-2621.2004.tb09956.x DOI: https://doi.org/10.1111/j.1365-2621.2004.tb09956.x
  39. Kinoti, W.M., Constable, F., Nancarrow, N., Rodoni, B., Plummer, K.M. (2016). First report of Cherry virus A (CVA) in Australia and the first report of CVA infecting Prunus cerasifera. Plant Dis., 100(7), 1511. https://doi.org/10.1094/PDIS-12-15-1499-PDN DOI: https://doi.org/10.1094/PDIS-12-15-1499-PDN
  40. Koinuma, H., Nijo, T., Iwabuchi, N., Yoshida, T., Keima, T., Okano, Y., Maejima, K., Yamaji, Y., Namba, S. (2016). First complete genome sequence of Cherry virus A. Genome Announc., 4(3), e00498-16. https://doi.org/10.1128/genomea.00498-16 DOI: https://doi.org/10.1128/genomeA.00498-16
  41. Komorowska, B., Cieślińska, M. (2004). First report of Cherry virus A and Little cherry virus-1 in Poland. Plant Dis., 88(8), 909. https://doi.org/10.1094/PDIS.2004.88.8.909C DOI: https://doi.org/10.1094/PDIS.2004.88.8.909C
  42. Komorowska, B., Cieślińska, M. (2005). First report of Cherry green ring mottle virus on sweet cherry in Poland. Plant Dis., 89(12), 1363. https://doi.org/10.1094/PD-89-1363A DOI: https://doi.org/10.1094/PD-89-1363A
  43. Komorowska, B., Cieślińska, M. (2008). First report of Little cherry virus 2 from sweet cherry in Poland. Plant Dis., 92(9), 1366. https://doi.org/10.1094/PDIS-92-9-1366A DOI: https://doi.org/10.1094/PDIS-92-9-1366A
  44. Krupa, T., Klimek, K., Zaraś-Januszkiewicz, E. (2022). Nutritional values of minikiwi fruit (Actinidia arguta) after storage: comparison between DCA new technology and ULO and CA. Molecules, 27(13), 4313. https://doi.org/10.3390/molecules27134313 DOI: https://doi.org/10.3390/molecules27134313
  45. Kryczyński, S., Paduch-Cichal, E., Szyndel, M.S. (1994). A virus – infection status of some propagative material plantations of sour- and sweet-cherries in Poland. Phytopathol. Pol., 8, 43–48.
  46. Kunachowicz, H., Przygoda, B., Nadolna, I., Iwanow, K. (2017). Tabele składu i wartości odżywczej żywności [Tables of food composition and nutritional value]. Wydawnictwo Lekarskie. PZWL, Warszawa, 1182 pp.
  47. Lee, J., Martin, R.R. (2009). Influence of grapevine leafroll associated viruses (GLRaV-2 and-3) on the fruit composition of Oregon Vitis vinifera L. cv. Pinot noir: Phenolics. Food Chem., 112(4), 889–896. https://doi.org/10.1016/j.foodchem.2008.06.065 DOI: https://doi.org/10.1016/j.foodchem.2008.06.065
  48. Levaj, B., Dragović-Uzelac, V., Delonga, K., Ganić, K.K., Banović, M., Kovačević, D.B. (2010). Polyphenols and volatiles in fruits of two sour cherry cultivars, some berry fruits and their jams. Food Technol. Biotechnol., 48(4), 538–547.
  49. Lu, M.G., Gao, R., Chen, R.R., Wu, B., Zhang, Z.X., Li, S.F. (2015). First report of Little cherry virus 1 in sweet cherry trees in China. Plant Dis., 99(8), 1191. https://doi.org/10.1094/PDIS-11-14-1200-PDN DOI: https://doi.org/10.1094/PDIS-11-14-1200-PDN
  50. Ludvíková, H., Suchá, J. (2011). First report of little cherry disease from sweet cherry (Prunus avium) and sour cherry (P. cerasus) in the Czech Republic. Plant Dis., 95(9), 1197. https://doi.org/10.1094/PDIS-12-10-0868 DOI: https://doi.org/10.1094/PDIS-12-10-0868
  51. Malinowski, T. (1997). Silicacapture-reverse transcription-polymerase chain reaction (SC-RT-PCR): application for the detection of several plant viruses. In: Diagnosis and identification of plant pathogens, Dehne, H.-W., Adam, G., Diekmann, M., Frahm, J., Mauler-Machnik, A., van Haltern P. (eds). Developments in Plant Pathology, Kluwer Academic Publisher, 11, 445–448. DOI: https://doi.org/10.1007/978-94-009-0043-1_97
  52. Mandic, B., Matić, S., Al-Rawhanih, M., Jelkmann, W., Myrta, A. (2007). Viruses of sweet and sour cherry in Serbia. J. Plant Pathol., 89(1), 103–108.
  53. Miletic, N., Jevremovic, D., Mitic, M., Popovic, B., Petkovic, M. (2022). Influence of D and Rec strains of plum pox virus on phenolic profile and antioxidant capacity of fresh plum fruits of ‘Čačanska Lepotica’ cultivar. Span. J. Agric. Res., 20(4), e1005, https://doi.org/10.5424/sjar/2022204-18179 DOI: https://doi.org/10.5424/sjar/2022204-18179
  54. Milošević, T., Milošević, N. (2012). Fruit quality attributes of sour cherry cultivars. Int. Scholar. Res. Not., Agronomy, 593981. https://doi.org/10.5402/2012/593981 DOI: https://doi.org/10.5402/2012/593981
  55. Mulabagal, V., Lang, G.A., DeWitt, D.L., Dalavoy, S.S., Nair, M.G. (2009). Anthocyanin content, lipid peroxidation and cyclooxygenase enzyme inhibitory activities of sweet and sour Cherries. J. Agric. Food Chem., 57(4), 1239–1246. https://doi.org/10.1021/jf8032039 DOI: https://doi.org/10.1021/jf8032039
  56. Németh, M. (1986). Virus, mycoplasma and rickettsia diseases of fruit trees. Akadémiai Kiadó, Budapest, 256–261.
  57. Noorani, M.S., Awasthi, P., Singh, R.M., Ram, R., Sharma, M.P., Singh, S.R., Ahmed, N., Hallan, V., Zaidi, A.A. (2010). Complete nucleotide sequence of cherry virus A (CVA) infecting sweet cherry in India. Arch. Virol., 155(12), 2079–2082. DOI: https://doi.org/10.1007/s00705-010-0826-6
  58. Pallás, V., Aparicio, F., Herranz, M.C., Amari, K., Sanches-Pina, M.A., Myrta, A., Sanchez-Navarro, J.A. (2012). Ilarviruses in Prunus spp.: A continued concern for fruit trees. Phytopathology, 102(12), 1108–1120. https://doi.org/10.1094/PHYTO-02-12-0023-RVW DOI: https://doi.org/10.1094/PHYTO-02-12-0023-RVW
  59. Papp, N., Szilvássy, B., Abrankó, L., Szabó, T., Pfeier, P., Szabó, Z., Nyéki, J., Ercisli, S., Stefanovits-Bányai, É., Hegedus, A. (2010). Main quality attributes and antioxidants in Hungarian sour cherries: Identification of genotypes with enhanced functional properties. Int. J. Food Sci. Technol., 45, 395–402. https://doi.org/10.1111/j.1365-2621.2009.02168.x DOI: https://doi.org/10.1111/j.1365-2621.2009.02168.x
  60. Podsiadło, C., Jaroszewska, A., Rumasz-Rudnicka, E., Kowalewska, R. (2009). Zmiany składu chemicznego owoców wiśni uprawianych w różnych warunkach wodnych i nawozowych [Changes of chemical composition of fruit of cherry cultivated on different water and fertilizer conditions]. Infrastrukt. Ekol. Ter. Wiej. [Infrastruct. Ecol. Rural Areas], 3, 223–231.
  61. Rao, W.L., Li, F., Zuo, R.J., Li, R. (2011). First report of Little cherry virus 2 in flowering and sweet cherry trees in China. Plant Dis., 95(11), 1484. https://doi.org/10.1094/PDIS-10-10-0766 DOI: https://doi.org/10.1094/PDIS-10-10-0766
  62. Rao, W.L., Zhang, Z.-K., Li, R. (2009). First report of Cherry virus A in sweet cherry trees in China. Plant Dis., 93(4), 425. https://doi.org/10.1094/PDIS-93-4-0425B DOI: https://doi.org/10.1094/PDIS-93-4-0425B
  63. Rop, O., Mlcek, J., Jurikova, T., Valsikova, M. (2012). Bioactive content and antioxidant activity of Cape gooseberry fruit. Cent. Eur. J. Biol., 7(4), 672–679. https://doi.org/10.2478/s11535-012-0063-y DOI: https://doi.org/10.2478/s11535-012-0063-y
  64. Rott, M.E., Jelkmann, W. (2001). Detection and partial characterization of a second Closterovirus associated with little cherry disease, Little cherry virus-2. Phytopathology, 91(3), 261–267. https://doi.org/10.1094/PHYTO.2001.91.3.261 DOI: https://doi.org/10.1094/PHYTO.2001.91.3.261
  65. Rubio, M., Martinez-Gomes, P., Marais, A., Sanchez-Navarro, J.A., Pallas, V., Candresse, T. (2017). Recent advances and prospects in Prunus virology. Ann. Appl. Biol., 171, 125–138. https://doi.org/10.1111/aab.12371 DOI: https://doi.org/10.1111/aab.12371
  66. Ruiz-García, A.B., Martínez, C., Santiago, R., García, M.T., de Prado, N., Olmos, A. (2016). First report of Little cherry virus 1 (LChV-1) in sweet cherry in Spain. Plant Dis., 100(11), 2340. https://doi.org/10.1094/PDIS-05-16-0620-PDN DOI: https://doi.org/10.1094/PDIS-05-16-0620-PDN
  67. Sabanadzovic, S., Abou Ghanem-Sabanadzovic, N.A., Rowhani, A., Grant, J.A., Uyemoto, J.K. (2005). Detection of Cherry virus A., cherry necrotic rusty mottle virus and Little cherry virus 1 in California orchards. J. Plant Pathol., 87(3), 173–177.
  68. Šafářová, D., Lemberk, J., Navrátil, M. (2022). Characterisation of the little cherry virus 1 isolate infecting almonds in the Czech Republic. Plant Prot. Sci., 58(4), 292–297. https://doi.org/10.17221/63/2022-PPS DOI: https://doi.org/10.17221/63/2022-PPS
  69. Saint-Cricq De Gaulejac, N., Provost, C., Vivas, N. (1999). Comparative study of polyphenol scavenging activities assessed by different methods. J. Agric. Food Chem., 47(2), 425–431. https://doi.org/10.1021/jf980700b DOI: https://doi.org/10.1021/jf980700b
  70. Simkovich, A., Kohalmi, S., Wang, A. (2021). First report of Cherry virus A infecting sweet cherry in Ontario, Canada. New Dis. Rep., 44, e12022. https://doi.org/10.1002/ndr2.12022 DOI: https://doi.org/10.1002/ndr2.12022
  71. Simunic, V., Kovac, S., Gaso-Sokac, D., Pfannhauser, W., Murkovic M. (2005). Determination of anthocyanins in four Croatian cultivars of sour cherries (Prunus cerasus). Eur. Food Res. Technol., 220, 575–578. https://doi.org/10.1007/s00217-004-1103-2 DOI: https://doi.org/10.1007/s00217-004-1103-2
  72. Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol., 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1 DOI: https://doi.org/10.1016/S0076-6879(99)99017-1
  73. Sochor, J., Zitka, O., Skutkova, H., Pavlik, D., Babula, P., Krska, B., Horna, A., Adam, V., Provaznik, I., Kizek, R. (2010). Content of phenolic compounds and antioxidant capasity in fruits of apricot genotypes. Molecules, 15(9), 6285–6305. https://doi.org/10.3390/molecules15096285 DOI: https://doi.org/10.3390/molecules15096285
  74. Sokół-Łętowska, A., Kucharska, A.Z., Hodun, G., Gołba, M. (2020). Chemical composition of 21 cultivars of sour cherry (Prunus cerasus) fruit cultivated in Poland. Molecules, 25(19), 4587. https://doi.org/10.3390/molecules25194587 DOI: https://doi.org/10.3390/molecules25194587
  75. Stace-Smith, R., Hansen, A.J. (1976). Some properties of cherry rasp leaf virus. Acta Hortic., 67, 193–198. https://doi.org/10.17660/ActaHortic.1976.67.23 DOI: https://doi.org/10.17660/ActaHortic.1976.67.23
  76. Szpadzik, E., Krupa, T., Molska-Kawulok, K., Przybyłko, S. (2022). Fruit quality and contents of some bioactive compounds in selected Czech sweet cherry (Prunus avium L.) cultivars under conditions of central Poland. Agriculture, 12(11), 1859. https://doi.org/10.3390/agriculture12111859 DOI: https://doi.org/10.3390/agriculture12111859
  77. Tsuda, K., Kosaka, Y., Kobori, T., Shiomi, H., Musumi, K., Kataoka, M. (2005). Effects of fertilizer application on yield and vitamin C content of tomato inoculated with the attenuated isolate CM95 of Cucumber mosaic virus. Jap. J. Phytopathol., 71(1), 1–5. https://doi.org/10.3186/jjphytopath.71.1 DOI: https://doi.org/10.3186/jjphytopath.71.1
  78. Usenik, V., Stampar, F., Mikulic-Petkovsek, M., Kastelec D. (2015). The effect of fruit size and fruit colour on chemical composition in ‘Kordia’ sweet cherry (Prunus avium L.). J. Food Compos. Anal., 38, 121–130. https://doi.org/10.1016/j.jfca.2014.10.007 DOI: https://doi.org/10.1016/j.jfca.2014.10.007
  79. Usenik, V., Kastelec, D., Stampar, F., Virscek Marn, M. (2014). Effect of Plum pox virus on chemical composition and fruit quality of plum. J. Agric. Food Chem., 63(1), 51–60. https://doi.org/10.1021/jf505330t, https://pubs.acs.org/doi/epdf/10.1021/jf505330t DOI: https://doi.org/10.1021/jf505330t
  80. Usenik, V., Kastelec, D., Veberic, R., Štampar, F. (2008). Quality changes during ripening of plums (Prunus domestica L.). Food Chem., 111(4), 830–836. https://doi.org/10.1016/j.foodchem.2008.04.057 DOI: https://doi.org/10.1016/j.foodchem.2008.04.057
  81. Usenik, V., Stampar, F., Kastelec, D., Virscek Marn, M. (2017). How does sharka affect the phenolics of plum fruit (Prunus domestica L.)?. Hort. Sci. (Prague), 44(2), 64–72. https://doi.org/10.17221/196/2015-HORTSCI DOI: https://doi.org/10.17221/196/2015-HORTSCI
  82. Vizzotto, M., Cisneros-Zevallos, L., Byrne, D.H., Ramming, D.W., Okie, W.R. (2007). Large variation found in the phytochemical and antioxidant activity of peach and plum germplasm. J. Am. Soc. Hortic. Sci., 132(3), 334–340. https://doi.org/10.21273/JASHS.132.3.334 DOI: https://doi.org/10.21273/JASHS.132.3.334
  83. Wadley, B.N., Nyland, G. (1976). Rusty mottle group. In: Virus diseases and non-infectious disorders of stone fruits in North America (eds). US Department of Agriculture, Agricultural Research Service, United State Department of Agriculture. Washington, D.C. Agriculture Handbook, 437, 242–249.
  84. Wang, J., Zhai, Y., Zhu, D., Liu, W., Pappu, H.R, Liu Q. (2018). Whole-genome characterization of Prunus necrotic ringspot virus infecting sweet cherry in China. Genome Announc., 6(9), e00060-18. https://doi.org/10.1128/genomeA.00060-18 DOI: https://doi.org/10.1128/genomeA.00060-18
  85. Welsh, M.F., Cheney, P.W. (1976). Little cherry. In: US Department of Agriculture, Virus diseases and non-infectious disorders of stone fruits in North America. Agriculture Handbook. Agricultural Research Service, United State Department of Agriculture. Washington, D.C., 437, 231–237.
  86. Wojdyło, A., Nowicka, P., Laskowski, P., Oszmianski J. (2014). Evaluation of sour cherry (Prunus cerasus L.) fruits for their polyphenol content, antioxidant properties, and nutritional components. J. Agric. Food Chem., 62(51), 12332−12345. https://doi.org/10.1021/jf504023z DOI: https://doi.org/10.1021/jf504023z
  87. Zhang, Y.P., Kirkpatrick, B.C., Di Terlizzi, B., Uyemoto, J.K. (2000). Comparison of Cherry green ring mottle virus strains using RT-CR and coat protein sequence phylogeny. J. Plant Pathol., 82(1), 49–53. https://doi.org/10.4454/JPP.V82I1.114.
  88. Zhou, J.F., Wang, G.P., Qu, L.N., Deng, C.L., Wang, Y., Wang, L.P., Hong, N. (2013). First report of Cherry necrotic rusty mottle virus on stone fruit trees in China. Plant Dis., 97(2), 290. https://doi.org/10.1094/PDIS-09-12-0836-PDN DOI: https://doi.org/10.1094/PDIS-09-12-0836-PDN
  89. Zong, X., Wang, W., Wei, H., Wang, J., Yan, X., Hammond, R.W., Liu, Q. (2015). Incidence of sweet cherry viruses in Shandong Province, China and a case study on multiple infection with five viruses. J. Plant Pathol., 97(1), 61−68. https://doi.org/10.4454/JPP.V97I1.047.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.