Skip to main navigation menu Skip to main content Skip to site footer

Vol. 24 No. 6 (2025)

Articles

Exploring the role of abiotic elicitors in the biosynthesis of secondary metabolites in peppermint (Mentha piperita L.)

DOI: https://doi.org/10.24326/asphc.2025.5402
Submitted: 3 July 2024
Published: 30.12.2025

Abstract

Secondary metabolites are a large group of organic compounds generally biosynthesized by medicinal and aromatic plants, which have a wide range of uses in human life today. Peppermint (Mentha piperita L.) is widely used as a traditional medicinal plant worldwide due to its high content of secondary metabolites, including menthol, limonene, pulegone, rosmarinic acid, cinnamic acid, eriocitrin, narirutin and hesperidin. It has different medicinal and culinary uses, such as food flavoring and treating rheumatoid arthritis pain, sinusitis headache and breathing problems. Given the chemical synthesis of plant secondary metabolites under laboratory conditions is considerably expensive and complicated, some alternative methods have been developed. Applying abiotic elicitors such as UV-radiation, abiotic stresses, and phytohormones during peppermint cultivation is an effective strategy to modify secondary metabolite content and components. Therefore, in this review, the most important secondary metabolites of peppermint and their uses are first described, and the abiotic elicitors used to influence the secondary metabolites profile of peppermint and their reaction mechanisms are then explained.

References

  1. Abdelsalam, I.M., Ghosh, S., AlKafaas, S.S., Bedair, H., Malloum, A., ElKafas, S.S., Saad-Allah, K.M. (2023). Nanotechnology as a tool for abiotic stress mitigation in horticultural crops. Biologia, 78, 163–178. https://doi.org/10.1007/s11756-022-01251-z
  2. Abdi, G., Karami, L. (2020). Salicylic acid effects on some physiochemical properties and secondary metabolite accumulation in Mentha piperita L. under water deficit stress. Adv. Hortic. Sci., 34(1), 81–91. https://doi.org/10.13128/ahsc-8404
  3. Abdi, G., Shokrpour, M., Karami, L., Salami, S.A. (2018). Prolonged water deficit stress and methyl jasmonate-mediated changes in metabolite profile, flavonoid concentrations and antioxidant activity in peppermint (Mentha × piperita L.). Notulae Bot. Horti Agrobot. Cluj-Napoca, 47(1), 70–80. https://doi.org/10.15835/nbha47110952
  4. Abu El-Leel, O., Mohamed, S., Sukar, N., Abd EL-Aziz, M. (2021). Influence of jasmine oil and methyl jasmonate on gene expression and menthol production in Mentha. Sci. J. Agric. Sci., 3(2), 171–184. https://doi.org/10.21608/sjas.2021.79508.1108
  5. Afkar, S., Karimzadeh, G., Jalali-Javaran, M., Sharifi, M., Behmanesh, M. (2013). Influence of methyl jasmonate on menthol production and gene expression in peppermint (Mentha × piperita L.). J. Med. Plants By-Prod., 2(1), 75–82. https://doi.org/10.22092/jmpb.2013.108494
  6. Ahmad, B., Dar, T.A., Khan, M.M.A., Ahmad, A., Rinklebe, J., Chen, Y., Ahmad, P. (2022). Oligochitosan fortifies antioxidative and photosynthetic metabolism and enhances secondary metabolite accumulation in arsenic-stressed peppermint. Front. Plant Sci., 13, 987746. https://doi.org/10.3389/fpls.2022.987746
  7. Ahmad, B., Shabbir, A., Jaleel, H., Khan, M.M.A., Sadiq, Y. (2018). Efficacy of titanium dioxide nanoparticles in modulating photosynthesis, peltate glandular trichomes and essential oil production and quality in Mentha piperita L. Curr. Plant Biol., 13, 6–15. https://doi.org/10.1016/j.cpb.2018.04.002
  8. Ahmad, N., Sharma, S., Alam, M.K., Singh, V.N., Shamsi, S.F., Mehta, B.R., Fatma, A. (2010). Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B, Biointerfaces, 81(1), 81–86. https://doi.org/10.1016/j.colsurfb.2010.06.029
  9. Aldoghachi, F.E.H., Noor Al-Mousawi, U.M., Shari, FH. (2021). Antioxidant activity of rosmarinic acid extracted and purified from Mentha piperita. Arch. Razi Instit., 76(5), 1279–1287. https://doi.org/10.22092/ari.2021.356072.1770
  10. Alhaithloul, H.A., Soliman, M.H., Ameta, K.L., El-Esawi, M.A., Elkelish, A. (2019). Changes in ecophysiology, osmolytes, and secondary metabolites of the medicinal plants of Mentha piperita and Catharanthus roseus subjected to drought and heat stress. Biomolecules, 10(1), 43. https://doi.org/10.3390/biom10010043
  11. Ali, Z.A., Yahya, R., Sekaran, S.D., Puteh, R. (2016). Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Adv. Mat. Sci. Eng., 4102196. https://doi.org/10.1155/2016/4102196
  12. Askary, M., Talebi, S.M., Amini, F., Dousti Balout Bangan, A. (2016). Effect of NaCl and iron oxide nanoparticles on Mentha piperita essential oil composition. Environ. Exp. Biol., 14(1), 27–32. https://doi.org/10.22364/eeb.14.05
  13. Atanassova, M., Georgieva, S., Ivancheva, K. (2011). Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. J. Chem. Technol. Metall., 46(1), 81–88.
  14. Azimychetabi, Z., Nodehi, M.S., Moghadam, T.K., Motesharezadeh, B. (2021). Cadmium stress alters the essential oil composition and the expression of genes involved in their synthesis in peppermint (Mentha piperita L.). Ind. Crops Prod., 168, 113602. https://doi.org/10.1016/j.indcrop.2021.113602
  15. Aziz, E.E., Al-Amier, H., Craker, L.E. (2008). Influence of salt stress on growth and essential oil production in peppermint, pennyroyal and apple mint. J. Herbs Spices Med. Plants, 14(1–2), 77–87. https://doi.org/10.1080/10496470802341375
  16. Baenas, N., García-Viguera, C., Moreno, D.A. (2014). Elicitation: a tool for enriching the bioactive composition of foods. Molecules, 19(9), 13541–13563. https://doi.org/10.3390/molecules190913541
  17. Behn, H., Albert, A., Marx, F., Noga, G., Ulbrich, A. (2010). Ultraviolet-B and photosynthetically active radiation interactively affect yield and pattern of monoterpenes in leaves of peppermint (Mentha × piperita L.). J. Agric. Food Chem., 58(12), 7361–7367. https://doi.org/10.1021/jf9046072
  18. Bodalska, A., Kowalczyk, A., Włodarczyk, M., Fecka, I. (2019). Analysis of polyphenolic composition of a herbal medicinal product-peppermint tincture. Molecules, 25(1), 69. https://doi.org/10.3390/molecules25010069
  19. Bose, S.K., Yadav, R.K., Mishra, S., Sangwan, R.S., Singh, A.K., Mishra, B., Srivastava, A.K., Sangwan, N.S. (2013). Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in differential manner in Mentha arvensis L. Plant Physiol. Biochem., 66, 150–158. https://doi.org/10.1016/j.plaphy.2013.02.011
  20. Bupesh, G., Amutha, C., Nandagopal, S., Ganeshumar, A., Sureshkumar, P., Murali, K.S. (2007). Antibacterial activity of Mentha piperita L. (Peppermint) from leaf extracts – a medicinal plant. Acta Agric. Sloven., 89(1), 62–73.
  21. Cappellari, L.D.R., Chiappero, J., Palermo, T.B., Giordano, W., Banchio, E. (2020). Volatile organic compounds from rhizobacteria increase the biosynthesis of secondary metabolites and improve the antioxidant status in Mentha piperita L. grown under salt stress. Agronomy, 10(8), 1094. https://doi.org/10.3390/agronomy10081094
  22. Cappellari, L.D.R., Santoro, M.V., Schmidt, A., Gershenzon, J., Banchio, E. (2019). Improving phenolic total content and monoterpene in Mentha × piperita by using salicylic acid or methyl jasmonate combined with rhizobacteria inoculation. Int. J. Mol. Sci., 21(1), 50. https://doi.org/10.3390/ijms21010050
  23. Charles, D.J., Joly, R.J., Simon, JE. (1990). Effects of osmotic stress on the essential oil content and composition of peppermint. Phytochemistry, 29(9), 2837–2840. https://doi.org/10.1016/0031-9422(90)87087-B
  24. Croteau, R.B., Davis, E.M., Ringer, K.L., Wildung, M.R. (2005). Menthol biosynthesis and genetics. Naturwissenschaften, 92(12), 562–577. https://doi.org/10.1007/s00114-005-0055-0
  25. Ćavar Zeljković, S., Šišková, J., Komzáková, K., De Diego, N., Kaffková, K., Tarkowski, P. (2021). Phenolic compounds and biological activity of selected Mentha species. Plants, 10(3), 550. https://doi.org/10.3390/plants10030550
  26. Çoban, Ö., Baydar, N.G. (2016). Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (Mentha piperita L.) under salt stress. Ind. Crops Prod., 86(1), 251–258. https://doi.org/10.1016/j.indcrop.2016.03.049
  27. Davis, E.M., Ringer, K.L., McConkey, M.E., Croteau, R. (2005). Monoterpene metabolism. Cloning, expression, and characterization of menthone reductases from peppermint. Plant Physiol., 137(3), 873–881. https://doi.org/10.1104/pp.104.053306
  28. Dempsey, D.A., Klessig, D.F. (2012). SOS – too many signals for systemic acquired resistance? Trends Plant Sci., 17(9), 538–545. https://doi.org/10.1016/j.tplants.2012.05.011
  29. Dolzhenko, Y., Bertea, C.M., Occhipinti, A., Bossi, S., Maffei, M.E. (2010). UV-B modulates the interplay between terpenoids and flavonoids in peppermint (Mentha × piperita L.). J. Photochem. Photobiol. B, Biol., 100(2), 67–75. https://doi.org/10.1016/j.jphotobiol.2010.05.003
  30. Farooqi, A., Samgwan, N., Sangwan, R. (1999). Effect of different photoperiodic regimes on growth, flowering and essential oil in Mentha species. Plant Growth Regul., 29(3), 181–187. https://doi.org/10.1023/A:1006248019007
  31. Fathi, A., Oveysi, M., Nasri, M., Tohidi, H., Kasraei, P. (2020). Physiological responses of peppermint (Mentha piperita L.) to plant growth regulators and salinity stress. Iran. J. Plant Physiol., 11(1), 3499–3508.
  32. Figueroa-Pérez, M.G., Gallegos-Corona, M.A., Ramos-Gomez, M., Reynoso-Camacho, R. (2015). Salicylic acid elicitation during cultivation of the peppermint plant improves anti-diabetic effects of its infusions. Food Funct. J., 6(6), 1865–1874. https://doi.org/10.1039/c5fo00160a
  33. Gao, Q.-M., Yu, K., Xia, Y., Shine, M.B., Wang, C., Navarre, D., Kachroo, A., Kachroo, P. (2014). Mono- and digalactosyldiacylglycerol lipids function nonredundantly to regulate systemic acquired resistance in plants. Cell Rep., 9(5), 1681–1691. https://doi.org/10.1016/j.celrep.2014.10.069
  34. Halder, M., Sarkar, S., Jha, S. (2019). Elicitation. A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng. Life Sci., 19(12), 880–895. https://doi.org/10.1002/elsc.201900058
  35. Haydari, M., Maresca, V., Rigano, D., Taleei, A., Shahnejat-Bushehri, A.A., Hadian, J., Sorbo, S., Guida, M., Manna, C., Piscopo, M., Notariale, R., De Ruberto, F., Fusaro, L., Basile, A. (2019). Salicylic acid and melatonin alleviate the effects of heat stress on essential oil composition and antioxidant enzyme activity in Mentha × piperita and Mentha arvensis L. Antioxidants, 8(11), 547. https://doi.org/10.3390/antiox8110547
  36. Heydari, M., Zanfardino, A., Taleei, A., Bushehri, A.A.S., Hadian, J., Maresca, V., Sorbo, S., Napoli, M.D., Varcamonti, M., Basile, A., Rigano, D. (2018). Effect of heat stress on yield, monoterpene content and antibacterial activity of essential oils of Mentha × piperita var. Mitcham and Mentha arvensis var. piperascens. Molecules, 23(8), 1903. https://doi.org/10.3390/molecules23081903
  37. Hosseini, S.J., Tahmasebi-Sarvestani, Z., Pirdashti, H., Modarres-Sanavy, S.A.M., Mokhtassi-Bidgoli, A., Hazrati, S., Nicola, S. (2021). Investigation of yield, phy tochemical composition, and photosynthetic pigments in different mint ecotypes under salinity stress. Food Sci. Nutr., 9(5), 2620–2643. https://doi.org/10.1002/fsn3.2219
  38. Jankovskis, L., Kokina, I., Plaksenkova, I., Jermaļonoka, M. (2022). Impact of different nanoparticles on common wheat (Triticum aestivum L.) plants, course, and intensity of photosynthesis. Sci. World J., 3693869. https://doi.org/10.1155/2022/3693869
  39. Khorasaninejad, S., Mousavi, A., Soltanloo, H., Hemmati, K., Khalighi, A. (2011). The effect of drought stress on growth parameters, essential oil yield and constituent of Peppermint (Mentha piperita L.). J. Med. Plant Res., 5(22), 5360–5365.
  40. Klessig, D.F., Choi, H.Y., Dempsey, D.A. (2018). Systemic acquired resistance and salicylic acid: past, present, and future. systemic acquired resistance and salicylic acid: past, present, and future. Mol. Plant Microbe Interact, 31(9), 871–975. https://doi.org/10.1094/mpmi-03-18-0067-cr
  41. Krzyzanowska, J., Czubacka, A., Pecio, L., Przybys, M., Doroszewska, T., Stochmal, A., Oleszek, W. (2012). The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha × piperita cell suspension cultures. Plant Cell Tiss. Organ Cult., 108, 73–81. https://doi.org/10.1007/s11240-011-0014-8
  42. Li, Z., Yang, H., Wu, X., Guo, K., Li, J. (2014). Some aspects of salinity responses in peppermint (Mentha piperita L.) to NaCl treatment. Protoplasma, 252(3), 885–899. https://doi.org/10.1007/s00709-014-0728-7
  43. Lim, G.-H., Shine, M.B., de Lorenzo, L., Yu, K., Cui, W., Navarre, D., Hunt, A.G., Lee, J.-Y., Kachroo, A., Kachroo, P. (2016). Plasmodesmata localizing proteins regulate transport and signaling during systemic acquired immunity in plants. Cell Host Microbe, 19(4), 541–549. https://doi.org/10.1016/j.chom.2016.03.006
  44. Lv, J., Huang, H., Yu, L., Whent, M., Niu, Y., Shi, H., Wang, T.T.Y., Luthria, D., Charles, D., Yu, LL. (2012). Phenolic composition and nutraceutical properties of organic and conventional cinnamon and peppermint. Food Chem., 132(3), 1442–1450. https://doi.org/10.1016/j.foodchem.2011.11.135
  45. Maffei, M., Canova, D., Bertea, C.M., Scannerini, S. (1999). UV-A effects on photomorphogenesis and essential-oil composition in Mentha piperita. J. Photochem. Photobiol. B, Biol., 52(1–3), 105–110. https://doi.org/10.1016/S1011-1344(99)00110-4
  46. Mahendran, G., Rahman, L.-U. (2020). Ethnomedicinal, phytochemical and pharmacological updates on peppermint (Mentha × piperita L.). A review. Phytother. Res., 34(9), 2088–2139. https://doi.org/10.1002/ptr.6664
  47. Malik, N.A.A., Kumar, I.S., Nadarajah. K. (2020). Elicitor and receptor molecules: orchestrators of plant defense and immunity. Int. J. Mol. Sci., 21(3), 963. https://doi.org/10.3390/ijms21030963
  48. McKay, D.L., Blumberg, J.B. (2006). A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother. Res., 20(8), 619–633. https://doi.org/10.1002/ptr.1936
  49. Merely, P.G.F., Rocha-Guzmán, N.E., Mercado-Silva, E., Loarca-Piña, G., Reynoso-Camacho, R. (2014). Effect of chemical elicitors on peppermint (Mentha piperita) plants and their impact on the metabolite profile and antioxidant capacity of resulting infusions. Food Chem., 156, 273–278. https://doi.org/10.1016/j.foodchem.2014.01.101
  50. Métraux, J.P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W., Inverardi, B. (1990). Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science., 250(4983), 1004–1006. https://doi.org/10.1126/science.250.4983.1004
  51. Mimica-Dukić, N., Božin, B., Soković, M., Mihajlović, B., Matavulj, M. (2003). Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Med., 69(5), 413–419. https://doi.org/10.1055/s-2003-39704
  52. Mölders, W., Buchala, A., Métraux, J.-P. (1996). Transport of salicylic acid in tobacco necrosis virus-infected cucumber plants. Plant Physiol., 112(2), 787-792. https://doi.org/10.1104/pp.112.2.787
  53. Naksawat, M., Norkaew, C., Charoensedtasin, K., Roytrakul, S., Tanyong, D. (2023). Anti-leukemic effect of menthol, a peppermint compound, on induction of apoptosis and autophagy. Peer J., 11, e15049. https://doi.org/10.7717/peerj.15049
  54. Nazerieh, Z., Oraghi Ardebili, Z., Iranbakhsh, A.R. (2018). Potential benefits and toxicity of nanoselenium and nitric oxide in peppermint. Acta Agric. Sloven., 111(2), 357-368. https://doi.org/10.14720/aas.2018.111.2.11
  55. Nemati Lafmejani, Z., Jafari, A.A., Moradi, P., Moghadam, A.L. (2018). Impact of foliar application of copper sulphate and copper nanoparticles on some morpho-physiological traits and essential oil composition of peppermint (Mentha piperita L.). Herba Polonica., 64(2), 13–24.
  56. Pallas, J.A., Paiva, N.L., Lamb, C., Dixon, R.A. (1996). Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant J., 10(2), 281–293. https://doi.org/10.1046/j.1365-313X.1996.10020281.x
  57. Park, Y.J., Baek, S.-A., Choi, Y., Kim, J.K., Park, S.U. (2019). Metabolic profiling of nine Mentha species and prediction of their antioxidant properties using chemo metrics. Molecules, 24(2), 258. https://doi.org/10.3390/molecules24020258
  58. Roodbari, N., Roodbari, S., Ganjali, A., Sabeghi Nejad, F., Ansarifar, M. (2013). The effect of salinity stress on growth parameters and essential oil percentage of peppermint (Mentha piperita L.). Int. J. Adv. Biol. Biomed. Res., 1(9), 1009–1015.
  59. Saharkhiz, M.J., Goudarzi, T. (2014). Foliar application of salicylic acid changes essential oil content and chemical compositions of peppermint (Mentha piperita L.). J. Essent. Oil Bear. Plants., 17(3), 435–440. https://doi.org/10.1080/0972060X.2014.892839
  60. Shah, J., Chaturvedi, R., Chowdhury, Z., Venables, B., Petros, R.A. (2014). Signaling by small metabolites in systemic acquired resistance. Plant J., 79(4), 645–658. https://doi.org/10.1111/tpj.12464
  61. Shah, J., Zeier, J. (2013). Long-distance communication and signal amplification in systemic acquired resistance. Front. Plant Sci., 4, 30. https://doi.org/10.3389/fpls.2013.00030
  62. Shulaev, V., León, J., Raskin, I. (1995). Is salicylic acid a translocated signal of systemic acquired resistance in tobacco? Plant Cell, 7(10), 1691–1701.
  63. Singh, A., Lim, G.-H., Kachroo, P. (2017). Transport of chemical signals in systemic acquired resistance. J. Integr. Plant Biol., 59(5), 336–344. https://doi.org/10.1111/jipb.12537
  64. Singh, R., Shushni, M.A., Belkheir, A. (2015). Antibacterial and antioxidant activities of Mentha piperita L. Arab. J. Chem., 8(3), 322–328. https://doi.org/10.1016/j.arabjc.2011.01.019
  65. Soheilikhah, Z., Modarresi, M., Karimi, N., Movafeghi, A. (2021). Qualitative and quantitative analysis of diosmin content of hyssop (Hyssopus officinalis) in response to salinity stress. Heliyon, 7(10), e08228. https://doi.org/10.1016/j.heliyon.2021.e08228
  66. Soleymani, F., Taheri, H., Shafeinia, A. (2015). Effects of gibberellic acid on gene expression of menthol biosynthesis pathway in peppermint (Mentha piperita L.). J. Adv. Chem. Eng., 2(2), 131–134.
  67. Soleymani, F., Taheri, H., Shafeinia, A. (2017). Relative expression of genes of menthol biosynthesis pathway in peppermint (Mentha piperita L.) after chitosan, gibberellic acid and methyl jasmonate treatments. Russ. J. Plant Physiol., 64(1), 59–66. https://doi.org/10.1134/S1021443717010150
  68. Sroka, Z., Fecka, I., Cisowski, W. (2005). Antiradical and anti-H2O2 properties of polyphenolic compounds from an aqueous peppermint extract. Z. Naturforsch. C, 60(11–12), 826–832. https://doi.org/10.1515/znc-2005-11-1203
  69. Tabbert, J.M., Schulz, H., Krähmer, A. (2022). Investigation of LED light qualities for peppermint (Mentha × piperita L.) cultivation focusing on plant quality and consumer safety aspects. Front. Food. Sci. Technol., 2, 852155. https://doi.org/10.3389/frfst.2022.852155
  70. Valko, M., Morris, H., Cronin, M. (2005). Metals, toxicity and oxidative stress. Curr. Med. Chem., 12(10), 1161– 1208. https://doi.org/10.2174/0929867053764635
  71. Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz- Jawhar, R., Ward, E., Uknes, S., Kessmann, H., Ryals, J. (1994). Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell, 6(7), 959–965. https://doi.org/10.1105/tpc.6.7.959
  72. Wang, C., El-Shetehy, M., Shine, M. B., Yu, K., Navarre, D., Wendehenne, D., Kachroo, A., Kachroo, P. (2014). Free radicals mediate systemic acquired resistance. Cell Rep., 7(2), 348–355. https://doi.org/10.1016/j.celrep.2014.03.032
  73. Wendehenne, D., Gao, Q. M., Kachroo, A., Kachroo, P. (2014). Free radical-mediated systemic immunity in plants. Curr. Opin. Plant Biol., 20, 127–134. https://doi.org/10.1016/j.pbi.2014.05.012
  74. Yalpani, N., Silverman, P., Wilson, T.M.A., Kleier, D.A., Raskin, I. (1991). Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell., 3(8), 809–818. https://doi.org/10.1105/tpc.3.8.809
  75. Yu, K., Soares, J.M., Mandal, M.K., Wang, C., Chanda, B., Gifford, A.N., Fowler, J.S., Navarre, D., Kachroo, A., Kachroo, P. (2013). A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Rep., 3(4), 1266–1278. https://doi.org/10.1016/j.celrep.2013.03.030
  76. Zhao, H., Ren, S., Yang, H., Tang, S., Guo, C., Liu, M., Tao, Q., Ming, T., Xu H. (2022). Peppermint essential oil: its phytochemistry, biological activity, pharmacological effect and application. Biomed. Pharmacother., 154, 113559. https://doi.org/10.1016/j.biopha.2022.113559
  77. Zheljazkov, V.D., Craker, L.E., Xing, B. (2006). Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environ. Exp. Bot., 58(1–3), 9–16. https://doi.org/10.1016/j.envexpbot.2005.06.008

Downloads

Download data is not yet available.

Similar Articles

<< < 20 21 22 23 24 25 26 27 28 29 > >> 

You may also start an advanced similarity search for this article.