Skip to main navigation menu Skip to main content Skip to site footer

Vol. 24 No. 2 (2025):

Articles

Callus induction and establishment of efficient regeneration system for a newly developed line of Ananas comosus (L.) Merrill

DOI: https://doi.org/10.24326/asphc.2025.5432
Submitted: September 13, 2024
Published: 30.04.2025

Abstract

In vitro culture method is developed for propagation of a new line of Ananas comosus (L.) Merrill selected from a spontaneous mutant of cultivar Yellow Mauritius. The stem with leaves base obtained from sucker buds was selected as explants. The effects of type and concentration of different plant growth regulators on callus induction, adventitious bud formation and plant regeneration were investigated by the single factor, complete combination and L9 (34) orthogonal experiment. A large number of adventitious buds differentiated on Murashige and Skoog (MS) medium with 4.0 mg·L–1 6-BA, 1.0 mg·L–1 NAA and 1.0 mg·L–1 KT, reaching differentiation coefficient over 12.8. Browning of callus after 2–3 subcultures was eliminated by the application of 1.0 g·L–1 of activated carbon in the optimal medium, which didn’t significantly reduce differentiation coefficient. The main shoots in adventitious buds were higher in number and stronger suitable for rooting in culture. Hundred percent rooting in vitro was achieved on half-strength MS medium with 1.0 mg·L–1 NAA. The survival rate of the tissue culture-raised plants was 100%. The methods developed and defined can be used not only for improved the yield of in vitro plants, but also for shortening the whole culture cycle.

References

  1. Ali, M.M., Hashim, N., Abd Aziz, S., Lasekan, O. (2020). Pineapple (Ananas comosus): a comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products. Food Res. Int., 137, 109675. https://doi.org/10.1016/j.foodres.2020.109675
  2. Be, L.V., Debergh, P.C. (2006). Potential low-cost micropropagation of pineapple (Ananas comosus). S. Afr. J. Bot., 72(2), 191–194. http://doi.org/10.1016/j.sajb.2005.07.002
  3. Cacaï, G.H.T., Ahokpossi, B.A.M., Houédjissin, S.S., Houngue, J.A., Badou, B.T., Ahanhanzo, C. (2023). Plant regeneration through indirect organogenesis in two cultivars of pineapple (Ananas comosus L.). Open J. Appl. Sci., 13(7), 1039–1058. https://doi.org/10.4236/ojapps.2023.137083
  4. Da Silva, R.L., Ferreira, C.F., Da Silva Ledo, C.A., de Souza, E.H., Da Silva, P.H., De Carvalho Costa, M.A.P., Sou-za, F.V.D. (2016). Viability and genetic stability of pineapple germplasm after 10 years of in vitro conservation. Plant Cell Tiss. Org., 127(1), 123–133. https://doi.org/10.1007/s11240-016-1035-0
  5. Editorial Board of Flora of China, Chinese Academy of Botany (1997). Flora Reipublicae Popularis Sinicae, vol. 13. Science Press, Beijing.
  6. Escalona, M., Lorenzo, J.C., González, B., Daquinta, M., González, J.L., Desjardins, Y., Borroto, C.G. (1999). Pine-apple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep., 18(9), 743–748. https://doi.org/10.1007/s002990050653
  7. Firoozabady, E., Gutterson, N. (2003). Cost-effective in vitro propagation methods for pineapple. Plant Cell Rep., 21(9), 844–850. https://doi.org/10.1007/s00299-003-0577-x
  8. Firoozabady, E., Moy, Y. (2004). Regeneration of pineapple plants via somatic embryogenesis and organogenesis. In Vitro Cell Dev. Biol. Plant, 40(1), 67–74. https://doi.org/10.1079/IVP2003494
  9. Ibrahim, M.A., Al-Taha, H., Seheem, A.A. (2013). Effect of cytokinin type and concentration, and source of ex-plant on shoot multiplication of pineapple plant (Ananas comosus ‘Queen’) in vitro. Acta Agric. Slov., 101(1), 15–20. https://doi.org/10.2478/acas-2013-0002
  10. Lakho, M.A., Jatoi, M.A., Solangi, N., Abul-Soad, A.A., Qazi, M.A., Abdi, G. (2023). Optimizing in vitro nutrient and ex vitro soil mediums-driven responses for multiplication, rooting, and acclimatization of pineapple. Sci. Rep., 13(1), 1275. https://doi.org/10.1038/s41598-023-28359-9
  11. Lizeth, A.A., de Lourdes, M.C. (2018). Production of callus and roots from lateral meristems of Loeselia mexicana. Botanical Sciences 96(3):405–414. https://doi.org/10.17129/botsci.1910
  12. Mendonça, V., de Medeiros Mendonça, L.F., Pereira, E.C., Leite, G.A. (2017). The growth and nutrition of pineapple (Ananas comosus L.) plantlets under different water retention regimes and manure. Afr. J. Agr. Res., 12(21), 1852–1860. https://doi.org/10.5897/AJAR2016.11702
  13. Murashige, T., Skoog, F.A. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  14. Nelson, B.J., Asare, P.A., Junior, R.A. (2015). In vitro growth and multiplication of pineapple under different dura-tion of sterilization and different concentrations of benzylaminopurine and sucrose. Biotechnology, 14(1), 35–40. https://doi.org/10.3923/biotech.2015.35.40
  15. Osei-Kofi, F., Amoatey, H.M., Lokko, Y. (1997). Improvement of pineapple (Ananas comosus (L.) Merr.) using biotechnology and mutation breeding techniques. Int. At. Energy Agency J., 23–27. https://www.osti.gov/etdeweb/servlets/purl/519224
  16. Reinhardt, D.H.R.C., Bartholomew, D.P., Souza, F.V.D., Carvalho, A.C.P.P.D., Pádua, T.R.P.D., Junghans, D.T., Matos, A.P.D. (2018). Advances in pineapple plant propagation. Rev. Bras. Frutic., 40, e-302. https://doi.org/10.1590/0100-29452018302
  17. Sastry, K.S. (2013). Plant virus transmission through vegetative propagules (asexual reproduction). In: Sastry, K.S., Seed-borne plant virus diseases. Springer, India, 285–305. https://doi.org/10.1007/978-81-322-0813-6_9
  18. Scherer, R.F., Holderbaum, D.F., Garcia, A.C., Silva, D.A.D., Steinmacher, D.A., Guerra, M.P. (2015). Effects of immersion system and gibberellic acid on the growth and acclimatization of micropropagated pineapple. Crop Breed. Appl. Biot., 15(2), 66–71. https://doi.rog/10.1590/1984-70332015v15n2a13
  19. Soneji, J.R., Rao, P.S., Mhatre, M. (2002a). In vitro regeneration from leaf explants of pineapple (Ananas comosus L. Merr.). J. Plant Biochem. Biot., 11(2), 117–119. https://doi.org/10.1007/BF03263147
  20. Soneji, J.R., Rao, P.S., Mhatre, M. (2002b). Somaclonal variation in micropropagated dormant axillary buds of pineapple (Ananas comosus L.Merr.). J. Hort. Sci. Biotechnol., 77(1), 28–32. https://doi.org/10.1080/14620316.2002.11511452
  21. Sripaoraya, S., Marchant, R., Power, J.B., Davey, M.R. (2003). Plant regeneration by somatic embryogenesis and organogenesis in commercial pineapple (Ananas comosus L.). In Vitro Cell Dev. Biol. Plant, 39, 450–454. https://doi.org/10.1079/IVP2003445
  22. Torres Ruiz, J.R., Lecona Guzmán, C.A., Silverio Gómez, M.C., Gutiérrez Miceli, F.A., Ruiz Lau, N., Santana Buzzy, N. (2023). Direct organogenesis in landrace pineapple induced by 6-benzylaminopurine. Rev. Mex. Cienc. Agríc., 14(6), 1–12. https://doi.org/10.29312/remexca.v14i6.3159
  23. Usman, I.S., Abdulmalik, M.M., Sani, L.A., Muhammad, A.N. (2013). Development of an efficient protocol for micropropagation of pineapple (Ananas comosus L. var. smooth cayenne). Afr. J. Agr. Res., 8(18), 2053–2056. https://doi/org/10.5897/AJAR12.1763
  24. Zuraida, A.R., Shahnadz, A.N., Harteeni, A., Roowi, S., Radziah, C.C., Sreeramanan, S. (2011). A novel approach for rapid micropropagation of maspine pineapple (Ananas comosus L.) shoots using liquid shake culture system. Afr. J. Biotechnol., 10(19), 3859–3866. https://doi.rog/10.5897/AJB10.1349

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.