Skip to main navigation menu Skip to main content Skip to site footer

Vol. 9 No. 4 (2010)

Articles

ANTIMICROBIAL AND ANTIPROTOZOAL EFFECT OF SWEET MARJORAM (Origanum majorana L.)

Submitted: January 27, 2021
Published: 2010-12-31

Abstract

The objective of the present study that has been carried out in the Institute of Chemistry, Warsaw University of Life Sciences, was to investigate antimicrobial activity of a number of sweet marjoram extracts. Raw (fresh or dried) plant material from culinary or medicinal herbs may contain varying amounts of bacteria or protozoa, including some known human pathogens. The isolates, which are prepared by procedures involving the use of elevated temperature and/or organic solvents or other chemicals are expected to have considerably less or no such potentially harmful burden. Four sweet marjoram (Origanum majorana L.) fractions obtained by steam distillation, Soxhlet n-hexane extraction, extraction with aqueous ethanol, and with ethanolic ammonia solution were evaluated in vitro for activity against twenty Gram-positive or Gram-negative bacterial strains, six Candida sp. yeast strains and a single protozoan species Pentatrichomonas hominis. The n-hexane extract showed the highest antibacterial activity and inhibited growth of eight out of nine Staphylococcus aureus strains used. The other bacteria showed no substantial susceptibility to the extracts, except that Acinetobacter baumannii showed some inhibition by the aqueous ethanol extract. The isolates were also active against three out of six Candida sp. strains used, and the ethanolic ammonia extract reduced the number of viable P. hominis trophozoites by 50% at 160 μg·ml-1 concentration in 24 h cultures; the remaining extracts were considerably less or but marginally effective. These data warrant further study on identifying the components of the extracts with the highest activities.

References

Abdel-Massih R. M., Fares R., Bazzi S., El-Chami N., Baydoun E., 2009. The apoptotic and antiproliferative activity of Origanum majorana extracts on human leukemic cell line. Leuk. Res.
Oct 22 [Epub ahead of print].
Baranauskiene R., Venskutonis P. R., Demyttenaere J. C. R., 2005. Sensory and instrumental evaluation of sweet marjoram (Origanum majorana L.) aroma. Flavour Frag. J. 20, 492–500.
Baratta M. T., Dorman H. J. D., Deans S. G., Figueiredo A. C., Barroso J. G., Ruberto G., 1998. Antimicrobial and antioxidant properties of some commercial essential oils. Flavour Frag.
J. 13 (4), 235–244.
Charai M., Mosaddak M., Faid M., 1996. Chemical composition and antimicrobial activites of two aromatic plants: O. majorana L. and O. compactum Benth. J. Ess. Oil Res. 8, 657–664.
Chomicz L., Padzik M., Laudy A. L., Kozłowska M., Pietruczuk A., Piekarczyk J., Godineau N., Olędzka G., Kazimierczuk Z., 2009. Anti-Pentatrichomonas hominis activity of newly synthesized
benzimidazole derivatives – in vitro studies. Acta Parasitol. 54, 165–171.
Daferera D. J., Ziogas B. N., Pollissiou M. G., 2000. GC-MS analysis of essential oils from some Greek aromatic plants and their fungitoxicity on Penicillium digitatum. J. Agric. Food Chem.
48, 2576–2581.
Daferera D. J., Ziogas B. N., Pollissiou M. G., 2003. The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop. Prot. 22, 39–44.
Fecka I., Turek S., 2008. Determination of polyphenolic compounds in commercial herbal drugs and spices from Lamiaceae: thyme, wild thyme and sweet marjoram by chromatographic techniques. Food Chem. 108, 1039–1053.
Heo H., Cho H. Y., Hong B., Kim H. K., Heo T. R., Kim E. K., Kim S. K., Kim C. J., Shin D. H., 2002. Ursolic acid of Origanum majorana L. reduces a β-induced oxidative injury. Mol Cells 13, 5–11.
Jang Y. S., Yang Y. C., Choi D. S., Ahn Y. J., 2005. Vapor phase toxicity of marjoram oil compounds and their related monoterpenoids to Blattella germanica (Orthoptera: Blattellidae).
J. Agric. Food Chem. 53, 7892–7898.
Janicsak G., Mathe I., Miklossy-Vari V., Blunden G., 1999. Comparative studies of the rosmarinic and caffeic acid contents of Lamiaceae species. Biochem. System Ecol. 27, 733–738.
Mejlholm O., Dalgaard P., 2002. Antimicrobial effect of essential oils on the seafood spoilage micro-organism Photobacterium phosphoreum in liquid media and fish products. Let. Appl.
Microbiol. 34, 27–31.
Mori K., Kawano M., Fuchino H., Ooi T., Satake M., Agatsuma Y., Kusumi T., Sekita S., 2008. Antileishmanial compounds from Cordia fragrantissima collected in Burma (Myanmar).
J. Nat. Prod. 71, 18–21.
Nurzyńska-Wierdak R., Dzida K., 2009. Influence of plant density and term of harvest on yield and chemical composition of sweet marjoram (Origanum majorana L.). Acta Sci. Pol. Hortorum
Cultus 8 (1), 51–61.
Pavela R., 2004. Insecticidal activity of certain medicinal plants. Fitoterapia; 75, 745–750.
Roumy V., Fabre N., Portet B., Bourdy G., Acebey L., Vigor C., Valentin A., Moulis C., 2009. Four anti-protozoal and anti-bacterial compounds from Tapirira guianensis. Phytochemistry
70, 305–311.
Saksirisampant W., Nuchprayoon S., Wiwanitkit V., Yenthakam S., Ampavasiri A., 2003. Intestinal parasitic infestations among children in an orphanage in Pathum Thani province. J. Med.
Assoc. Thai. 86, 263–270.
Sarer E., Scheffer J. J., Baerheim Svendsen A., 1982. Monoterpenes in the essential oil of Origanum majorana. Planta Med. 46, 236–239.
Sellami I. H., Maamouri E., Chahed T., Wannes W. A., Kchouk M. E., Marzouk B., 2009. Effect of growth stage on the content and composition of the essential oil and phenolic fraction of
sweet marjoram (Origanum majorana L.). Ind. Crops Prod. 30, 395–402.
Singleton V. L., Rossi J. A., 1965. Colorimetry of total phenolics with phosphomolybdicphodphotonegstics acid reagents. Am. J. Etnol. Vitic. 16, 144–158.
Tajkarimi M.M., Ibrahim S.A., Cliver D.O., 2010. Antimicrobial herb and spice compound. Food Control 21, 1199–1218.
Tasdemir D., Brun R., Franzblau S. G., Sezgin Y., Calis I., 2008. Evaluation of antiprotozoal and antimycobacterial activities of the resin glycosides and the other metabolites of Scrophularia
cryptophila. Phytomedicine 15, 209–215.
Vagi E., Simandi B., Suhajda A., Hethelyi E., 2005. Essential oil composition and antimicrobial activity of Origanum majorana L. Extracts obtained with ethyl alcohol and supercritical carbon
dioxide. Food Res. Int. 38, 51–57.
Yang C. R., Meng Z. D., Wang X., Li Y. L., Zhang Y. X., Zhao Q. P., 1990. Diarrhoea surveillance in children aged under 5 years in a rural area of Hebei Province, China. J. Diarrhoeal
Dis. Res. 8, 155–159.
Yang Y. C., Lee S. H., Clark J. M., Ahn Y. J., 2009. Ovicidal and adulticidal activities of Origanum majorana essential oil constituents against insecticide-susceptible and pyrethroid/malathion-resistant Pediculus humanus capitis (Anoplura: Pediculidae). J. Agric. Food Chem. 57, 2282–2287.
Yazdanparast R., Shahriyary L., 2008. Comparative effects of Artemisia dracunculus, Satureja hortensis and Origanum majorana on inhibition of blood platelet adhesion, aggregation and
secretion. Vascul. Pharmacol. 48, 32–37.
Zawiślak G., 2008. Dependence on harvest date and yielding of marjoram (Origanum marjorana L.) cv. “Miraż” cultivated from a seedling. Acta Sci. Pol. Hortorum Cultus 7, 73–81.
Zheng Z. L., Tan J. Y. W., Liu H. Y., Zhou X. H., Xiang X., Wang K.Y., 2009. Evaluation of oregano essential oil (Origanum heracleoticum L.) on growth, antioxidant effect and resistance against
Aeromonas hydrophila in channel catfish (Ictalurus punctatus). Aquaculture 292, 214–218.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.