Abstract
Background/Aim: Asparagus officinalis L. has attracted increasing scientific interest because of its agricultural, genetic, and pharmacological significance. This study aimed to systematically map intellectual and conceptual structures, growth patterns, and emerging trends in A. officinalis research from 1853 to 2025.
Methods: A bibliometric and conceptual analysis was conducted using the Scopus database following the PRISMA 2020 guidelines. A total of 1,065 original research articles were retrieved and analyzed. Bibliometric indicators, keyword mapping, co-citation clustering, and citation burst analyses were performed using Bibliometrix (RStudio), VOSviewer and CiteSpace.
Results: Scientific production exhibited a steady increase with notable surges after 2000. Japan, China, and the USA have emerged as leading contributors. Core journals were identified according to Bradford’s law and key scholars were ranked by their local H-index. Thematic evolution revealed two major shifts in knowledge around 2001 and 2017, highlighting a transition toward molecular biology, genomics, and health-related studies. Eleven conceptual clusters were detected, with high Silhouette values indicating strong clustering quality. Emerging research hotspots include metabolomics, transcriptomics, and medicine.
Conclusion: This comprehensive bibliometric analysis revealed the dynamic growth and conceptual diversification of A. officinalis research, offering valuable insights into historical developments, current trends, and future research directions.
References
- Abdelrahman, M., Suzumura, N., Mitoma et al. (2017). Comparative de novo transcriptome profiles in Asparagus officinalis and A. kiusianus during the early stage of Phomopsis asparagi infection. Sci. Rep., 7. https://doi.org/10.1038/s41598-017-02566-7
- Aksnes, D.W., Langfeldt, L., Wouters, P. (2019). Citations, citation indicators, and research quality. An overview of basic concepts and theories. Sage Open, 9(1). https://doi.org/10.1177/2158244019829575
- Alkhammash, R. (2023). Bibliometric, network, and thematic mapping analyses of metaphor and discourse in COVID-19 publications from 2020 to 2022. Front. Psychol., 13. https://doi.org/10.3389/fpsyg.2022.1062943
- Cheng, Q., Zeng, L., Wen, H. et al. (2023). Steroidal saponin profiles and their key genes for synthesis and regulation in Asparagus officinalis L. by joint analysis of metabolomics and transcriptomics. BMC Plant Biol., 23(1), 207. https://doi.org/10.1186/s12870-023-04222-x
- Conversa, G., Lazzizera, C., Chiaravalle A.E. et al. (2019). Selenium fern application and arbuscular mycorrhizal fungi soil inoculation enhance Se content and antioxidant properties of green asparagus (Asparagus officinalis L.) spears. Sci. Hortic., 252, 176–191. https://doi.org/10.1016/j.scienta.2019.03.056
- Creydt, M., Arndt, M., Hudzik, D. et al. (2018). Plant metabolomics: evaluation of different extraction parameters for nontargeted UPLC-ESI-QTOF-mass spectrometry at the example of white Asparagus officinalis. J. Agric. Food Chem. 66(48), 12876– 12887. https://doi.org/10.1021/acs.jafc.8b06037
- Cui, J., Nie, F., Zhao, Y. et al. (2024). A review on plant endophytes in response to abiotic stress. Environ. Pollut. Bioav., 36(1). https://doi.org/10.1080/26395940.2024.2323123
- Fang, Z., Kong, W., Zhao, Z. et al. (2024). Asparagus officinalis L. extract exhibits anti-proliferative and anti-invasive effects in endometrial cancer cells and a transgenic mouse model of endometrial cancer. Front. Pharmacol. 15. https://doi.org/10.3389/fphar.2024.1507042
- Francis, D.V., Abdalla, A.K., Mahakham, W. et al. (2024). Interaction of plants and metal nanoparticles. Exploring its molecular mechanisms for sustainable agriculture and crop improvement. Environ. Int., 190. https://doi.org/10.1016/j.envint.2024.108859
- Giang, N.T.N., Van Khai, T. (2024). Effects of temperature and duration on extraction process utilising aqueous solvent towards quality of tea derived from dried roots of Asparagus officinalis L. Mal. J. Nutr., 30(3), 417–428.
- Harkess, A., Zhou, J., Xu, C., et al. (2017a). The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat. Commun., 8(1), 1279. https://doi.org/10.1038/s41467-017-01064-8
- Harkess, A., Zhou, J., Xu, C. et al. (2017b). The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat. Commun., 8, 1279. https://doi.org/10.1038/s41467-017-01064-8
- Ito, T., Konno, I., Kubota, S. et al. (2011). Production and characterization of interspecific hybrids between Asparagus kiusianus Makino and A. officinalis L. Euphytica, 182, 285–294. https://doi.org/10.1007/s10681-011-0508-9
- Jana, S., Mitra, P., Panchali, T. et al. (2025). Evaluating anti-inflammatory and anti-oxidative potentialities of the chloroform fraction of Asparagus racemosus roots against cisplatin induced acute kidney injury. J. Ethnopharmacol., 339, 119084. https://doi.org/10.1016/j.jep.2024.119084
- Kanno, A., Kubota, S., Ishino, K. (2014). Conversion of a male-specific RAPD marker into an STS marker in Asparagus officinalis L. Euphytica, 197, 39–46. https://doi.org/10.1007/s10681-013-1048-2
- Kumar, M.C., Udupa, A.L., Sammodavardhana, K. et al. (2010). Acute toxicity and diuretic studies of the roots of Asparagus racemosus Willd in rats. West Indian Med. J. 59(1), 3–6.
- Lee, Y.O., Kanno, A., Kameya, T. (1997). Phylogenetic relationships in the genus Asparagus based on the restriction enzyme analysis of the chloroplast DNA. Breed. Sci., 47(4), 375–378. https://doi.org/10.1270/jsbbs1951.47.375
- Mercati, F., Riccardi, P., Harkess, A. et al. (2015). Single nucleotide polymorphism-based parentage analysis and population structure in garden asparagus, a worldwide genetic stock classification. Mol. Breed., 35(2), 1–12. https://doi.org/10.1007/s11032-015-0217-5
- Moreno-Pinel, R., Castro-López, P., Die-Ramón, J.V. et al. (2021). Asparagus (Asparagus officinalis L.) breeding. In: Advances in plant breeding strategies: vegetable crops. Springer, Cham, 425–469. https://doi.org/10.1007/978-3-030-66961-4_12
- Murase, K., Shigenobu, S., Fujii, S. et al. (2017). MYB transcription factor gene involved in sex determination in Asparagus officinalis. Genes Cells, 22(1), 115–123. https://doi.org/10.1111/gtc.12453
- Nakabayashi, R., Hashimoto, K., Mori, T. et al. (2021). Spatial metabolomics using imaging mass spectrometry to identify the localization of asparaptine A in Asparagus officinalis. Plant Biotechnol., 38(3), 311–315. https://doi.org/10.5511/plantbiotechnology.21.0504b
- Nakabayashi, R., Yang, Z., Nishizawa, T. et al. (2015). Top-down targeted metabolomics reveals a sulfur-containing metabolite with inhibitory activity against angiotensin-converting enzyme in Asparagus officinalis. J. Nat. Prod., 78(5), 1179–1183. https://doi.org/10.1021/acs.jnatprod.5b00092
- Nakayama, H., Ito, T., Hayashi, Y. et al. (2006). Development of sex-linked primers in garden asparagus (Asparagus officinalis L.). Breed. Sci. 56(3), 327–330. https://doi.org/10.1270/jsbbs.56.327
- Olas, B. (2024). A review of the pro-health activity of Asparagus officinalis L. and its components. Foods 13(2), 288. https://doi.org/10.3390/foods13020288
- Pahuja, A., Jain, M., Rawat, K. (2024). A review on galactogogic properties of India’s rich tradition of medicinal herbs and spices for lactation. Trad. Integr. Med., 308–317.
- Park, J.-H., Ishikawa, Y., Ochiai, T. et al. (2004). Two GLOBOSA-like genes are expressed in second and third whorls of homochlamydeous flowers in Asparagus officinalis L. Plant Cell Physiol., 45(3), 325–332. https://doi.org/10.1093/pcp/pch040
- Park, J.-H., Ishikawa, Y., Yoshida, R. et al. (2003). Expression of AODEF, a B-functional MADS-box gene, in stamens and inner tepals of the dioecious species Asparagus officinalis L. Plant Mol. Biol., 51, 867–875. https://doi.org/10.1023/A:1023097202885
- Prasad, K., Saggam, A., Guruprasad, K.P. et al. (2024). Molecular mechanisms of Asparagus racemosus willd. and Withania somnifera (L.) Dunal as chemotherapeutic adjuvants for breast cancer treatment. J. Ethnopharmacol., 331, 118261. https://doi.org/10.1016/j.jep.2024.118261
- Saleh, A.S., Wang, P., Wang, N. et al. (2019). Technologies for enhancement of bioactive components and potential health benefits of cereal and cereal-based foods. Research advances and application challenges. Crit. Rev. Food Sci Nutr., 59(2), 207–227. https://doi.org/10.1080/10408398.2017.1363711
- Sarkis-Onofre, R., Catalá-López, F., Aromataris, E. et al. (2021). How to properly use the PRISMA Statement. Sys. Rev., 10, 117. https://doi.org/10.1186/s13643-021-01671-z
- Shahrajabian, M. H., Sun, W. (2022). Asparagus (Asparagus officinalis L.) and pennyroyal (Mentha pulegium L.), impressive advantages with wondrous health-beneficial phytochemicals. Not. Sci. Biol., 14(2), 11212. https://doi.org/10.55779/nsb14211212
- Shirato, K., Koda, T., Takanari, J. et al. (2018). Anti‐inflammatory effect of ETAS® 50 by inhibiting nuclear factor‐κB p65 nuclear import in ultraviolet‐B‐irradiated normal human dermal fibroblasts. Evid. Based Complement. Alternat. Med., 2018, 5072986. https://doi.org/10.1155/2018/5072986
- Techavuthiporn, C., Boonyaritthongchai, P. (2016). Effect of prestorage short-term Anoxia treatment and modified atmosphere packaging on the physical and chemical changes of green asparagus. Postharv. Biol. Technol., 117, 64–70. http://dx.doi.org/10.1016/j.postharvbio.2016.01.016
- Wen, S., Ying, J., Ye, Y. et al. (2024). Comprehensive transcriptome analysis of Asparagus officinalis in response to varying levels of salt stress. BMC Plant Biol., 24, 819. https://doi.org/10.1186/s12870-024-05540-4
- Yadav, N., Mudgal, D., Mishra, M. et al. (2024). Asparagus officinalis herb-derived carbon quantum dots: luminescent probe for medical diagnostics. Chem. Biodiv., 21(8), e202400891. https://doi.org/10.1002/cbdv.202400891
- Yu, Q., Fan, L. (2021). Improving the bioactive ingredients and functions of asparagus from efficient to emerging processing technologies: a review. Food Chem., 358, 129903. https://doi.org/10.1016/j.foodchem.2021.129903
- Zedan, A., Abdelfattah, M.H., El-Gezawy, E.S. et al. (2025). Protective effects of corn silk and Asparagus officinalis against formaldehyde-induced reproductive toxicity in male rats via CDK2/Spem1/Fbxo47 and Tet1 pathways. Toxicol. Res. (Camb), 14, tfaf039. https://doi.org/10.1093/toxres/tfaf039
- Zhang, X., Han, C., Wang, Y. et al. (2024a). Integrated analysis of transcriptomics and metabolomics of garden asparagus (Asparagus officinalis L.) under drought stress. BMC Plant Biol., 24(1), 563. https://doi.org/10.1186/s12870-024-05286-z
- Zhang, X., Han, C., Wang, Y. et al. (2024b). Integrated analysis of transcriptomics and metabolomics of garden asparagus (Asparagus officinalis L.) under drought stress. BMC Plant Biol., 24, 563. https://doi.org/10.1186/s12870-024-05286-z
- Zhu, L., Yu, X., Ren, Y. et al. (2024). Polysaccharide from Asparagus officinalis activated macrophages through NLRP3 inflammasome based on RNA-seq analysis. Biomed. Pharmacother., 181, 117729. https://doi.org/10.1016/j.biopha.2024.117729
Downloads
Download data is not yet available.
-
Xiaojin Ge,
Xiangyang Li,
Dandan Dai,
Zhen Yang,
Yanhong Wang,
Tiegang Yang,
Guixiao La,
Metabolomic analysis of Chinese yam (Dioscorea polystachya Turczaninow) bulbils at different germination stages by UPLC-Q-TOF-MS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 23 No. 1 (2024)
-
Wioletta Wróblewska,
Joanna Pawlak,
Dariusz Paszko,
The influence of factors on the yields of two raspberry varieties (Rubus idaeus L.) and the economic results
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 5 (2020)
-
Tatiana Eugenia Sesan,
Elena Enache,
Beatrice Michaela Iacomi,
Maria Oprea,
Florin Oancea,
Cristian Iacomi,
ANTIFUNGAL ACTIVITY OF SOME PLANT EXTRACTS AGAINST Alternaria alternata (Fr.) Keissl. IN THE BLACK CURRANT CROP (Ribes nigrum L.)
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 15 No. 5 (2016)
-
Małgorzata Schollenberger,
Agnieszka Gadomska-Gajadhur,
Ewa Mirzwa-Mróz,
Damian Kret,
Ewa Skutnik,
Elżbieta Paduch-Cichal,
Mark Gleason,
The influence of plant essential oils on in vitro growth of Pectobacterium and Dickeya spp. bacteria
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 6 (2021)
-
Grażyna Zawiślak,
Estimation of yield of sage (Salvia officinalis L.) in the second year of cultivation
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 2 No. 2 (2003)
-
Rizwan Taj Khan,
Madhia Ashraf,
Syed Rizwan Abbas,
Ansar Mehmood,
Sania Begum,
Genetic diversity of Brassica rapa germplasm of Azad Jammu and Kashmir, Pakistan revealed by molecular markers
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 21 No. 2 (2022)
-
Ting Wei,
Hai Wang,
Shurou Chen,
Jing Li,
Xia Li,
Ming Xin,
Xinhong Dong,
Hock Eng Khoo,
Calcium chloride regulates cellular calcium metabolism during the postharvest senescence of ripe passion fruit
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 23 No. 6 (2024)
-
Alireza Motallebi-Azar,
István Papp,
Anita Szegő,
DEHYDRIN PROFILES OF SOME IRANIAN MELON VARIETIES (Cucumis melo L. Merr) UNDER DROUGHT STRE SS CONDITIONS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 6 (2019)
-
Xue-mei Wu,
Zhi-tian Zuo,
Qing-zhi Zhang,
Yuan-zhong Wang,
EFFECT OF PROVENANCE AND WATER STRESS ON BIOMASS AND POLYPHYLLIN CONTENT IN THE MEDICINAL PLANT Paris polyphylla Smith var. yunnanensis
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 2 (2019)
-
Piotr Rybacki,
Przemysław Przygodziński,
Przemysław Łukasz Kowalczewski,
Zuzanna Sawinska,
Ireneusz Kowalik,
Andrzej Osuch,
Ewa Osuch,
Development and application of a model for the automatic evaluation and classification of onions (Allium cepa L.) using a Deep Neural Network (DNN)
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 23 No. 5 (2024)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.