Skip to main navigation menu Skip to main content Skip to site footer

Vol. 20 No. 5 (2021)

Articles

Olive antioxidants under climatic conditions

DOI: https://doi.org/10.24326/asphc.2021.5.5
Submitted: May 16, 2019
Published: 2021-10-29

Abstract

Climate change has become a widespread serious phenomenon. Its effects are related to variability in local climates rather than in global climatic patterns. Mediterranean countries are the most concerned where olive tree constitutes one of the most dynamic cultivations. This work focuses on the research for new indicators of the adaptation of the olive tree to several climatic conditions. ‘Chemlali’ and ‘Chetoui’ represent the primary Tunisian olive tree cultivars. To adapt to different climatic conditions characterizing the north, the center and the south of the country (superior semiarid, inferior semiarid and inferior arid respectively), these varieties synthesize many interesting compounds that have been screened and compared. Indeed, the methanolic extracts from ‘Chemlali’ and ‘Chetoui’ leaves have been tested for their antioxidant activities. The chemical compositions of the extracts have been quantified in antioxidants. Both ‘Chemlali’ and ‘Chetoui’ exhibited a significant antioxidant activity, reaching 90%. However, Chemlali activity was more important in the inferior semiarid (80%) and in the inferior arid (70%), while ‘Chetoui’ activity was more significant in the superior semiarid and in the inferior arid. Total phenols of ‘Chemlali’ showed a triple content in the inferior arid comparatively to the superior semiarid. Additionally, flavonoids, o-diphenols, saponin and carotenoids of ‘Chemlali’ increased significantly in this area as opposed to those of ‘Chetoui’. 2(3H) 5-methyl furanone, 4-vinyl methoxyphenol, and hexadecanoic acid known for their antioxidant activity and many others have been identified in these varieties.

References

  1. Aazza, S., Lyoussi, B., Miguel, M.G. (2011). Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules, 16, 7672–7690. https://doi.org/10.3390/molecules16097672
  2. Aguilera, F., Ruiz, L., Fornaciari, M., Romano, B., Galán, C., Oteros, J., Ben Dhiab, A., Msallem, M., Orlandi, F. (2014). Heat accumulation period in the Mediterranean region: phenological response of the olive in different climate areas (Spain, Italy and Tunisia). Int. J. Biometeorol., 58, 867–876. http://dx.doi.org/10.1007/s00484-013-0666-7
  3. Al-Dobai, S., Nasr, N. (2016). FAO preventive actions to the introduction and spread of OQDS – Xylella fastidiosa in NENA Region Crop Protection Officer. International Workshop on "Xylella fastidiosa and OQDS”, Bari, 19–22.
  4. Araújo, L.B.D.C., Silva, S.L., Galvão, M.A.M., Ferreira, M.R.A., Araújo, E.L., Randau, K.P., Soares, L.A.L. (2013). Total phytosterol content in drug materials and extracts from roots of Acanthospermum hispidum by UV-VIS spectrophotometry. Rev. Bras. Farmacogn., 23(5), 736–742. https://doi.org/10.1590/S0102-695X2013000500004
  5. Arji, I., Arzani, K. (2008). Effect of water stress on some biochemical changes in leaf of five olive (Olea europaea L.) cultivars. Acta Hortic., 791, 523–526. http://dx.doi.org/10.17660/ActaHortic.2008.791.80
  6. Ba, K., Tine, E., Destain, J., Cisse, N., Thonart, P. (2010). Étude comparative des composés phénoliques, du pouvoir antioxydant de différentes variétés de sorgho sénégalais et des enzymes amylolytiques de leur malt. Biotechnol. Agro. Soc. Environ., 14(1), 131–139 [in French].
  7. Baccou, J.C., Lambert, F., Sauvaire, Y. (1977). Spectrophotometric method for the determination of total steroidal sapogenin. Analyst, 102(1215), 458–65. https://doi.org/10.1039/an9770200458
  8. Bhattacharjee, S., Saha, A.K. (2014). Plant water-stress response mechanisms. In: Approaches to plant stress and their management, Gaur, R.K., Sharma, P. (eds.), Springer, India, 149–172. http://dx.doi.org/10.1007/978-81-322-1620-9_8
  9. Benavente-García, O., Castillo, J., Lorente, J., Ortuño, A., Del Rio, J.A. (2000). Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem., 68, 457–462. https://doi.org/10.1016/S0308-8146(99)00221-6
  10. Berenguer, M.J., Vossen, P.M., Grattan, S.R., Connell, J.H., Polito, V.S. (2006). Tree irrigation levels for optimum chemical and sensory properties of olive oil. HortScience, 41(2), 42–432. https://doi.org/10.21273/HORTSCI.41.2.427
  11. Blekas G., Psomiadou E., Tsimidou M., Boskou D. (2002). On the importance of total polar phenols to monitor the stability of Greek virgin olive oil. Eur. J. Lipid Sci. Technol., 104(6), 340–346. https://doi.org/10.1002/1438-9312(200206)104:6%3C340::AID-EJLT340%3E3.0.CO;2-L
  12. Boughalleb, F., Mhamdi, M. (2011). Possible involvement of proline and the antioxidant defense systems in the drought tolerance of three olive cultivars grown under increasing water deficit regimes. Agric. J., 6(6), 378–391. http://dx.doi.org/10.3923/aj.2011.378.391
  13. Brahmi, F., Mechri, B., Dhibi, M., Hammami, M. (2013). Variations in phenolic compounds and antiradical scavenging activity of Olea europaea leaves and fruits extracts collected in two different seasons. Ind. Crops Prod., 49, 256–264. https://doi.org/10.1016/j.indcrop.2013.04.042
  14. Chang, C.C., Yang, M.H, Wen, H.M., Chern, J.C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal., 10(3), 178–182. https://doi.org/10.38212/2224-6614.2748
  15. Choi, C.W., Kim, S.C., Hwang, S.S., Choi, B.K., Ahn, H.J., Lee, M.Y., Park, S.H., Kim, S.K. (2002). Antioxydant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay guided comparison. Plant Sci., 163(6), 1161–1168. https://doi.org/10.1016/S0168-9452(02)00332-1
  16. Ferreira, I.C.F.R., Queiroz, M.J.R.P., Vilas-Boas, M., Estevinho, L.M., Begouin, A., Kirsch, G. (2007). Evaluation of the antioxidant properties of diarylamines in the benzo[b]thiophene series by free radical scavenging activity and reducing power. Bioorg. Med. Chem. Letters, 16(5), 1384–1387. https://doi.org/10.1016/j.bmcl.2005.11.035
  17. Hanci, F., Cebeci, E. (2014). Investigation of proline, chlorophyll and carotenoids changes under drought stress in some onion (Allium Cepa L.) cultivars. Turk. J. Agric. Nat. Sci., S2, 1499–1504.
  18. Hsu, C.C., Kuo, H.C., Huang, K.E. (2017). The effects of phytosterols extracted from Diascorea alata on the antioxidant activity, plasma lipids, and hematological profiles in Taiwanese menopausal women. Nutrients, 9(12), 1320. https://doi.org/10.3390/nu9121320
  19. Kakinuma, K., Koike, J., Ishibashi, K., Takahashi, W., Takei, H. (1986). Structure-activity relationship and design of an antimutagen against the UV-induced mutation of Escherichia coli. Agric. Biol. Chem., 50(3), 625–631. https://doi.org/10.1080/00021369.1986.10867429
  20. Karamać, M., Kosińska, A., Pegg, R.B. (2005). Comparison of radical-scavenging activities for selected phenolic acids. Pol. J. Food Nutr. Sci., 55(2), 165–170.
  21. Kiritsakis, A., Shahidi, F. (2017). Olives and olive oil as functional foods: bioactivity, chemistry and processing. John Wiley, Sons, pp. 688.
  22. Kumar, M.S., Ali, K., Dahuja, A., Tyagi, A. (2015). Role of phytosterols in drought stress tolerance in rice. Plant Physiol. Biochem., 96, 83–89. https://doi.org/10.1016/j.plaphy.2015.07.014
  23. Lanfer-Marquez, U.M., Barros, R.M.C., Sinnecker, P. (2005). Antioxidant activity of chlorophylls and their derivatives. Food Res. Inter., 8–9(28), 885–891. http://doi.org/10.1016/j.foodres.2005.02.012
  24. Lewis, N.G., Yamamoto, E. (1989). Tannins – their place in plant metabolism. In: Chemistry and significance of condensed tannins, Hemingway, R.W., Karchesy, J.J., Branham, S.J. (eds.). Springer, US, 23–46.
  25. Lichtenthaler, H.K., Wellburn, A.R. (1983). Determination of total carotenoids and chlorophylls A and B of leaf in different solvents. Biochem. Soc. Trans., 11(5), 591–592. https://doi.org/10.1042/bst0110591
  26. Lois, R., Buchanan, B.B. (1994). Severe sensitivity to ultraviolet radiation in an Arabidopsis mutant deficient in flavonoid accumulation. II. Mechanisms of UV resistance in Arabidopsis. Ptanta, 194(4), 504–509. https://doi.org/10.1007/BF00714463
  27. Martinelli, F., Remorini, D., Saia, S., Massai, R., Tonutti, P. (2013). Metabolic profiling of ripe olive fruit in response to moderate water stress. Sci. Hortic., 159, 52–58. https://doi.org/10.1016/j.scienta.2013.04.039
  28. McDonald, S., Prenzler, P.D., Antolovich, M., Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chem., 73(1), 73–84. https://doi.org/10.1016/S0308-8146(00)00288-0
  29. Meyer, A.S., Heinonen, M., Frankel, E.N. (1998). Antioxidant interactions of catechin cyaniding, caffeic acid, quercetin and ellagic acid on human LDL oxidation. Food Chem., 61, 71–75.
  30. Özyürek, M., Akpınar, D., Bener, M., Türkkan, B., Güçlü, K., Apak, R. (2014). Novel oxime based flavanone, naringin-oxime: Synthesis, characterization and screening for antioxidant activity. Chem-Biol. Inter., 212, 40–46. https://doi.org/10.1016/j.cbi.2014.01.017
  31. Peiran, L., Diqiu, L., Tian-Rui, X., Ye, Y., Xiuming, C. (2017). Soil water stress attenuates the growth and development but enhance the saponin synthesis of Panax notogesing during flowering stage. Ind. Crops Prod., 108, 95–105. https://doi.org/10.1016/j.indcrop.2017.05.052
  32. Petridis, A., Therios, I., Samouris, G., Koundouras, S., Giannakoula, A. (2012). Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiol. Biochem., 60, 1–11. https://doi.org/10.1016/j.plaphy.2012.07.014
  33. Pierantozzi, P., Torres, M., Bodoira, R., Maestri, D. (2013). Water relations, biochemical – physiological and yield responses of olive trees (Olea europaea L. cvs. Arbequina and Manzanilla) under drought stress during the pre-flowering and flowering period. Agric. Water Manag., 125, 13–25. https://doi.org/10.1016/J.AGWAT.2013.04.003
  34. Pizzi, A., Cameron, F.A. (1986). Flavonoid tannins — structural wood components for drought-resistance mechanisms of plants. Wood Sci. Technol., 20(2), 119–124.
  35. Polya, G. (2003). Biochemical targets of plant bioactive compounds: A pharmacological reference, guide to sites of action and biological effects, CRC Press, pp. 864.
  36. Popović, B.M., Štajner, D., Ždero-Pavlović, R., Tumbas Šaponjac, V., Ćanadanović-Brunet, J., Orlović, S. (2016). Water stress induces changes in polyphenol profile and antioxidant capacity in poplar plants (Populus spp.). Plant Phys. Biochem., 105, 242–250. https://doi.org/10.1016/j.plaphy.2016.04.036
  37. Praveen Kumar, P., Kumaravel S., Lalitha, C. (2010). Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. Afr. J. Biochem. Res., 4(7), 191–195.
  38. Puente-Garza, C.A, Meza-Miranda, C., Ochoa-Martínez, D., García-Lara, S. (2017). Effect of in vitro drought stress on phenolic acids, flavonols, saponins, and antioxidant activity in Agave salmiana. Plant Phys. Biochem., 115, 400-407.
  39. Rivero, R.M., Ruiz J.M., García P.C., López-Lefebre L.R., Sánchez E., Romero L. (2001). Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci., 160, 315–321.
  40. Saidana, D., Mahjoub, S., Boussaada, O., Chriaa, J., Mahjoub, M.A., Chéraif, I., Daami, M., Mighri, Z., Helal, A.N. (2008). Antibacterial and antifungal activities of the essential oils of two saltcedar species from Tunisia. J. Am. Oil Chem. Soc., 85, 817–826.
  41. Shivakrishna, M.P., Reddy, K.A., Rao, D.M. (2018). Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi J. Biol. Sci., 25(2), 285–289. https://doi.org/10.1016/j.sjbs.2017.04.008
  42. Smirnoff, N. (1993). The role of active oxygen in the response to water deficit and desiccation. New Phytol., 125, 27–58. https://doi.org/10.1111/j.1469-8137.1993.tb03863.x
  43. Stuart, K.L., Coke, L.B. (1975). The effect of vomifoliol on stomatal aperture. Planta, 122(3), 307–310. https://doi.org/10.1007/BF00385281
  44. Suzuki, N., Rivero, R.M., Shulaev, V., Blumwald, E., Mittler, R., 2014. Abiotic and biotic stress combinations. New Phytol., 203(1), 32–43. https://doi.org/10.1111/nph.12797
  45. Therios, I.N. (2009). Olives. CABI, Wallingford, UK.
  46. Varela, M.C., Arslan, I., Reginato, M.A., Cenzano, A.M., Luna, M.V. (2016). Phenolic compounds as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina). Plant Physiol. Biochem., 104, 81–91. https://doi.org/10.1016/j.plaphy.2016.03.014
  47. Watson, R.R. (2014). Polyphenols in plants: isolation, purification and extract preparation. Academic Press, pp. 360.
  48. Worek, F., Thiermann, H., Szinicz, L., Eyer, P. (2005). Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Biochem. Pharmacol., 68(11), 2237–2248. https://doi.org/10.1016/j.bcp.2004.07.038
  49. Yu, L., Scanlin, L., Wilson, J., Schmidt, G. (2002). Rosemary extracts as inhibitors of lipid oxidation and color change in cooked turkey products during refrigerated storage. J. Food Sci., 67, 582–585. https://doi.org/10.1111/j.1365-2621.2002.tb10642.x

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.