Skip to main navigation menu Skip to main content Skip to site footer

Vol. 19 No. 4 (2020)

Articles

CHEMICAL COMPOSITION AND BIOLOGICAL ACTIVITIES ASSESS-MENT OF OLIVE FRUIT VOLATILES FROM DIFFERENT VARIETIES GROWN IN TUNISIA

DOI: https://doi.org/10.24326/asphc.2020.4.1
Submitted: April 11, 2019
Published: 2020-08-28

Abstract

Volatile compounds, present in olives, are responsible for the olive fruit flavor and oil aroma, influencing the consumer’s preference. These compounds have a biological activity to fight off pathogens. The aim of this work is to characterize volatiles in pulps and cores of Chemlali, Arbequina and Koroneiki olives, collected from Menzel Mhiri-Kairouan, and to test both the efficiency of these compounds against two bacteria and six phytopathogenic fungal species, by diffusion and dilution methods, and their antioxidants activities. The analyzis of volatiles were determined by GC-FID and GC-MS in three cultivars at the full ripening stage. Thirty five compounds were identified, such us an assortment of phenol, alcohol, hydrocarbon, aldehyde and terpenes derivatives. A high changes in volatiles was noted between cultivars and fruit organs. In fact, the major compounds in the pulps and the cores, of different cultivars, are (E)-2-decenal (46.9%), nonanal (19.6%), 1-hexadecene (16.3%), 7-Methyl-1,3,5-cycloheptatriene 7-Methyl-1,3,5-Cycloheptatriene (15.47%), (E,E)-2,4-decadienal (14.5%) and 1-tetradecene (14.6%). Also, the cores volatiles illustrated more richness in aldehydes than the pulps for all cultivars. Volatile fractions exhibited a moderate to important antibacterial activities against bacteria. However, Arbequina cores volatiles and both Chemlali and Koroneiki pulps volatiles established a moderate to higher activities against tested fungi. The DPPH and ABTS•+ tests demonstrated that the highest antioxidant capacity of volatiles were assigned to Arbequina cores and Koroneiki pulps. The Principal Components Analysis showed a significant relationship between antioxidants and/or antimicrobial properties and the levels of the main volatile compounds (limonene, methyldecane, nonanal, E-2-decenal, camphor, geranic acid, tetradecene, hexadecane, tetradecane) in different fruit organs.

References

  1. Adams, R.P. (1995). Identification of essential oil components by Gas chromatography/Mass spectroscopy. Carol Stream, IL Allured Publishing Corp.
  2. Adorjan, B., Buchbauer G.D. (2010). Biological properties of essential oils: an updated review. Flav. Fragr. J., 25, 407–426. https://doi.org/10.1002/ffj.2024
  3. Angerosa, F., Basti, C. (2001). Olive oil volatile compounds from the lipoxigenase pathway in relation to fruit ripeness. Italian J. Food Sci., 13(4), 421–428.
  4. Angerosa, F., Servili, M., Selvaggini, R., Taticchi, A., Esposto, S., Montedoro, G. (2004). Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A., 1054, 17–31. https://doi.org/10.1016/j.chroma.2004.07.093
  5. Barry, A.L., Thornsberry C. (1991). Susceptibility tests: Diffusion Test Procedures. In: Manual of clinical microbiology, 5 ed., Balows, A., Hauser W.J., Hermann K.L., Isenberg H.D., Shamody H.J. (eds), DC: American Society for Microbiology, Washington, pp. 1117–1125.
  6. Bassole, I.H.N., Ouattara, A.S., Nebie, R.L., Ouattara, C.A.T., Kabore, Z.I., Traore, S.A. (2003). Chemical composition and antibacterial activities of the essential oils of Lippia chevalieri and Lippia multiflora from Burkina Faso. Phytochem., 62, 209–212. https://doi.org/10.1016/S0031-9422(02)00477-6
  7. Battinellia, L., Danielea, C., Cristiani, M., Bisignano, G., Saija, A. Mazzanti, G. (2006). In vitro antifungal and anti-elastase activity of some aliphatic aldehydes from Olea europaea L. fruit. Phytomedicine, 13, 558–563. https://doi.org/10.1016/j.phymed.2005.09.009
  8. Ben Hamida, N., Abdelkefi, M.M., Ben Aissa, R., Chaabouni, M.M. (2001). Antibacterial screening of Origanum majorana L. Oil from Tunisia. J. Essent. Oil Res., 13(4), 295–297. https://doi.org/10.1080/10412905.2001.9699698
  9. Ben Mansour, A., Flamini, G., Ben Selma, Z., Le Dréau, Y., Artaud, J., Abdelhedi, R., Bouaziz, M. (2015). Olive oil quality is strongly affected by cultivar, maturity indexand fruit part: Chemometrical analysis of volatiles, fatty acids, squalene and quality parameters from whole fruit, pulp and seed oils of two Tunisian olive cultivars. Eur. J. Lipid Sci. Technol., 117, 976–987.
  10. Ben Mansour-Gueddes, S., Saidana, D., Cheraief, I., Dkhilali, M. and Braham, M. (2018). Biochemical, mineral and anatomical characteristics of the olive tree cv. Chetoui growing in several Tunisian areas. Acta Sci. Pol., Hortorum Cultus, 17(2), 49–70. DOI: 10.24326/asphc.2018.2.5
  11. Ben Temime, S., Baccouri,B., Taamalli, W., Abaza, L., Daoud D., Zarrouk, M. (2006). Location effects on oxidative stability of chétoui virgin olive oil. J. Food Biochem., 30(6), 659–670. https://doi.org/10.1111/j.1745-4514.2006.00086.x
  12. Bilel, H., Boubakri, L., Zagrouba, F. Hamdi, N. (2015). Chemical composition, antimicrobial and antioxidant activities of the essentials oils from flowers of Salvia sharifii. Eur. J. Chem., 6 (3), 301–304. DOI: 10.5155/eurjchem.6.3.301-304.1264
  13. Brahmi, F., Dabbou, S., Flamini, G., Edziri, H., Mastouri, M. Hammami, M. (2011). Fatty acid composition and biological activities of volatiles from fruits of two Tunisian olive cultivars. Int. J. Food Sci. Tech., 46, 1316–1322. DOI: 10.1111/j.1365-2621.2011.02616.x
  14. Brahmi, F., Flamini, G., Issaoui, M., Dhibi, M., Dabbou, S., Mastouri, M., Hammami, M. (2012). Chemical composition and biological activities of volatile fractions from three Tunisian cultivars of olive leaves. Med. Chem. Re., 21(10), 2863–2872.
  15. Brahmi, F., Chehab, H., Flamini, G., Dhibi, M., Issaoui, M., Mastouri, M. and, Hammami, M. (2013). Effects of irrigation regimes on fatty acid composition, antioxidant and antifungal properties of volatiles from fruits of koroneiki cultivar grown under Tunisian conditions. Pakistan J. Bio. Sci., 16 (22), 1469–1478. DOI: 10.3923/pjbs.2013.1469.1478
  16. Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods- a review. Int. J. Food Microbiol., 94, 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
  17. Cao, J., Deng, L., Zhu, X.M., Fan, Y., Hu, J.N., Li, J., and Deng, Z.Y. (2014). Novel approach to evaluate the oxidation state of vegetable oils using characteristic oxidation indicators. J. Agric. Food Chem., 62, 12545–12552. DOI: 10.1021/jf5047656
  18. Chang, S.T., Wu, J.H., Wang, S.Y., Kang, P.L., Yang, N.S, Shyur, L.F. (2001). Antioxidant activity of extracts from Acacia confusa bark and heartwood. J. Agric. Food Chem., 49(7), 3420–3424. https://doi.org/10.1021/jf0100907
  19. Choi Chang, W., Sei, C.K., Wang, S.H., Choi, B. K., Jahn, H., Lee, M.Y., Sang, H.P., Kim, S.K. (2002). Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci., 163(6), 1161–1168. https://doi.org/10.1016/S0168-9452(02)00332-1
  20. Dabbou, S., Dabbou, S., Chehab, H., Brahmi,F., Servili, M., Taticchi, A., Hammami, M. (2011). Chemical composition of virgin olive oils from Koroneiki cultivar grown in Tunisia with regard to fruit ripening and irrigation regimes. Int. J. Food Sci. Tech., 46, 577–585.
  21. Dabbou, S., Issaoui, M., Brahmi, F., Chehab, H., Mechri, B. Hammami, M. (2012). Changes in Volatile Compounds during Processing of Tunisian-Style Table Olives. J. Am. Oil. Chem. Soc., 89, 347–354. DOI: 10.1007/s11746-011-1907-8
  22. Fahmidabinti, A.R., Vishnu, P., Gayathri, R., Geetha, R.V. (2016). In vitro antibacterial activity of camphor oil against oral microbes. Int. J. Pharm. Sci. Rev. Res., 39(1), 119–121.
  23. Gill, A.O., Delaquis, P., Russo P., Holley, R.A. (2002). Evaluation of antilisterial action of cilantro oil on vacuum packed ham. Int. J. Food Microb., 73, 83–92. https://doi.org/10.1016/S0168-1605(01)00712-7
  24. Issaoui, M., Ben Hassine, K., Flamini, G., Brahmi, F., Chehab, H., Aouni, Y., Mechri, B., Zarrouk, M., and Hammami, M. (2009). Discrimination of some Tunisian olive oil varieties according to their oxidative stability, volatiles compounds and chemometric analysis. J. Food Lipids, 16(2), 164–186.
  25. Kalemba, D., Kunicka, A. (2003). Antibacterial and antifungal properties of essential oils. C. Med. Chem., 10, 813–829. DOI: 10.2174/0929867033457719
  26. Malheiro, R., Casal, S., Cunha, S.C., Baptista, P., Pereira, J.A. (2015). Olive Volatiles from Portuguese Cultivars Cobrançosa, Madural and Verdeal Transmontana: Role in Oviposition Preference of Bactroceraoleae (Rossi) (Diptera: Tephritidae). Plos One, 1–15. https://doi.org/10.1371/journal.pone.0125070
  27. Marmonier, A. (1987). Antibiotics: Technique of diffusion, discs method. Med. Bacteriol. usual Tech., SIMEP SA, Paris, pp 237–243.
  28. Miladi, H., Ben Slama, R., Mili, D., Zouari, S., Bakhrouf, A., Ammar, E. (2013). Essential oil of Thymus vulgaris L. and Rosmarinus officinalis L.: Gas chromatography-mass spectrometry analysis, cytotoxicity and antioxidant properties and antibacterial activities against foodborne pathogens. Nat. Sci., 5 (6), 729–739. DOI: 10.4236/ns.2013.56090
  29. Montedoro, G., Bertuccioli, M., Anichini, F. (1978). Aroma analysis of virgin olive oil by head space volatiles and extraction techniques. In: Flavor of Foods and Beverages. Chemistry and Technology, Charalambous, G. Inglett, G.E. (eds.), Academic Press, pp. 247–281.
  30. Morales, M.T., Przybylski, M. (2013). Olive Oil Oxidation. In: Handbook of Olive Oil: Analysis and Properties, Harwood, J., Aparicio R., (eds.), Springer Science and Business Media, New York, pp. 479–522.
  31. Piccaglia, R., Marotti, M., Galletti, G.C. (1991). Characterization of essential oil from a Saturejamontana L., a chemotype grown in northern Italy. J. Essent. Oil Res., 3, 147–152. https://doi.org/10.1080/10412905.1991.9700494
  32. Ruberto, G., Baratta, M.T. (2000). Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem., 69, 167-174. http://dx.doi.org/10.1016/S0308-8146
  33. Ruberto, G., Baratta, M.T., Deans, S.G., Dorman, H.J. (2000). Antioxidant and antimicrobial activity of Foeniculum vulgare and Crithmum maritimumessential oils. Planta Med., 66(8), 687–693.
  34. Saidana, D., Mahjoub, S., Boussaada, O., Chriaa, J., Mahjoub, M.A., Cheraif, I., Daami, M., Mighri, Z., Helal, A.N. (2008). Antibacterial and Antifungal Activities of the Essential Oils of Two Saltcedar Species from Tunisia. J. Am Oil Chem. Soc., 85, 817–826. DOI 10.1007/s11746-008-1251-9
  35. Sansone-Land, A., Takeoka, G.R., Shoemaker, C.F. (2014).Volatile constituents of commercial imported and domestic black-ripe table olives (Olea europaea). Food Chem., 149, 285–295. Shibamoto, T. (1987). Retention indices in essential oil analysis. In: Capillary gas chromatography in essential oil, Sandra, P., Bicchi, C. (eds). Hüthig, Heidelberg, Basel, New York, pp. 259–275. https://doi.org/10.1002/ffj.2730030311
  36. Van der Berghe, D.A., Vlietinck, A.J. (1991). Screening methods for antibacterial agents from higher plants. In: Methods in Plant Biochemistry: Assay for Bioactivity, Dey, P.M., Harborne, J.B., Hostettman, K. (eds.), Academic Press, pp. 47–69.
  37. Wang, W., Wu, N., Zu, Y.G., Fu, Y.J. (2008). Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chem., 108, 1019–1022. DOI: 10.1016/j.foodchem.2007.11.046
  38. Yang, T., Stoopen, G., Yalpani, N., Vervoort, J., Vos, R., Voste, A., Verstappen, F.W.A., Bouwmeester, H. J. and Jongsma, M.A. (2011). Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns. Metab. Eng., 13(4), 414–425. https://doi.org/10.1016/j.ymben.2011.01.011
  39. Yu, L., Scanlin, L., Wilson, J., Schmidt, G. (2002). Rosemary extracts as inhibitors of lipid oxidation and color change in cooked turkey products during refrigerated storage. J. Food Sci., 67, 582–585. DOI: 10.1111/j.1365-2621.2002.tb10642.x
  40. Yu, J., Lei, J., Yu, H., Cai, X., Zou, G. (2004). Chemical composition and antimicrobial activity of the essential oil of Scutellaria barbata. Phytochemistry, 65, 881–884.
  41. Zhang, J., Dou, J., Zhang, S., Liang, Q., Meng, Q. (2010). Chemical composition and antioxidant properties of the essential oil and methanol extracts of rhizome Alpinia officinarum from China in vitro. Afr. J. Biotech., 9(28), 4414–4421.
  42. Zhang, J.H., Sun, H.L., Chen, S.Y., Zeng, L., Wang, T.T. (2017). Antifungal activity, mechanism studies on α-Phellandrene and nonanal against Penicillium cyclopium. Bot. Stud., 58(13), 1–9. DOI: 10.1186/s40529-017-0168-8

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.