Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 20 Nr 4 (2021)

Artykuły

A COMBINED METHOD OF POSTHARVEST HANDLING OF SWEET CHERRY FRUITS IMPROVES FRUIT STORABILITY

DOI: https://doi.org/10.24326/asphc.2021.4.3
Przesłane: 26 lutego 2020
Opublikowane: 2021-08-31

Abstrakt

The objective of the research was to determine an optimum method of postharvest handling of sweet cherry fruits which may contribute to prolonged shelf-life. The following physical factors were examined – storage temperature: 2–4°C, 6–8°C, 18–20°C; postharvest fruit packaging and treatment: Xtend® CH-49 bags + no exposure to UV-C, Xtend® + exposure to UV-C for 120 s or 600 s, no bagging + no exposure to UV-C, no bagging + UV-C for 120 s or 600 s. UV-C irradiation, regardless of the duration and storage conditions, prolonged the storage life of sweet cherry fruit. During the 14-day period of storage, the smallest weight loss as well as the highest number of fruits suitable for consumption were found after exposure to UV-C for 600 s in both Xtend® bags and flat, exposed polyethylene containers. After 28 days, higher amount of fruits suitable for consumption were found after storage at 2–4°C than at 6–8ºC. The most advantageous postharvest treatment method was placing fruits in containers and irradiating them with UV-C for 600 s. However, statistically similar results were obtained also after packing the fruits in Xtend® bags and irradiating them with UV-C for 600 s as well as placing them in containers and irradiation with UV-C for 120 s. In addition, UV-C irradiated fruits for 120 s and 600 s contained significantly more reducing sugars than non-irradiated fruits after 14 days of storage. UV-C irradiated fruits for 600 s also contained the greatest amount of flavonoids. After 28 days of storage, the highest content of flavonoids and phenols was determined in UV-C exposed fruits stored in containers. In addition, it emerged that storing sweet cherry fruit at 2–4°C without bagging contributed to increased total phenolic content compared with fruit stored in Xtend® bags. Packaging cherry fruit in Xtend® bags is the most reasonable when it stored at 6–8°C and at room temperature.

Bibliografia

  1. Abadias, M., Alegre, I., Oliveira, M., Altisent, R., Viñas, I. (2012). Growth potential of Escherichia coli O157:H7 on fresh-cut fruits (melon and pineapple) and vegetables (carrot and escarole) stored under different conditions. Food Control., 27(1), 37–44. https://doi.org/10.1016/j.foodcont.2012.02.032
  2. Abdipour, M., Sadat Malekhossini, P., Hosseinifarahi, M., Radi, M. (2020). Integration of UV irradiation and chitosan coating: A powerful treatment for maintaining the postharvest quality of sweet cherry fruit. Sci. Hortic., 264, 109197. https://doi.org/10.1016/j.scienta.2020.109197
  3. Adetuyi, F.O., Karigidi, K.O., Akintimehin, E.S. (2018). Effect of postharvest UV-C treatments on the bioactive components, antioxidant and inhibitory properties of Clerodendrum volubile leaves. J. Saudi Soc. Agric. Sci., 19(1), 7–13. https://doi.org/10.1016/j.jssas.2018.03.005
  4. Aglar, E., Ozturk, B., Koc Guler, S., Karakaya, O., Uzun, S., Saracoglu, O. (2017). Effect of modified atmosphere packaging and Parka treatments on fruit quality characteristics of sweet cherry fruits (Prunus avium L. ‘0900 Ziraat’) during cold storage and shelf life. Sci. Hortic., 222, 162–168. https://doi.org/10.1016/j.scienta.2017.05.024
  5. AOAC (2005). Official methods of analysis. Association of Official Analytical Chemists. 18th Edition, Maryland, USA.
  6. Araque, L.C.O., Rodoni, L.M., Darré, M., Ortiz, C.M., Civello, P.M., Vicente, A.R. (2018). Cyclic low dose UV-C treatments retain strawberry fruit quality more effectively than conventional pre-storage single high fluence applications. LWT, 92, 304–311. https://doi.org/10.1016/j.lwt.2018.02.050
  7. Artés-Hernández, F., Escalona, V.H., Robles, P.A., Martínez-Hernández, G.B., Artés, F. (2009). Effect of UV-C radiation on quality of minimally processed spinach leave. J. Sci. Food. Agr., 89(3), 414–421. https://doi.org/10.1002/jsfa.3460
  8. Artés-Hernández, F., Robles, P.A., Gómez, P.A., Tomás-Callejas, A., Artés, F. (2010). Low UV-C illumination for keeping overall quality of fresh-cut watermelon. Postharvest. Biol. Technol., 55(2), 114–120. https://doi.org/10.1016/j.postharvbio.2009.09.002
  9. Bintsis, T., Litopoulou-Tzanetaki, E., Robinson, R.K. (2000). Existing and potential application of ultraviolet light in the food industry – a critical review. J. Sci. Food. Agric., 80(6), 637–645. https://doi.org/10.1002/(SICI)1097-0010(20000501)80:6<637::AID-JSFA603>3.0.CO;2-1
  10. Caleb, O.J., Opara, U.L., Witthuhn, C.R. (2012) Modified atmosphere packaging of pomegranate fruit and arils: A review. Food Bioproc. Technol., 5(1), 15–30. https://doi.org/10.1007/s11947-011-0525-7
  11. Charles, M.T., Arul, J., Charlebois, D., Yaganza, E.-S., Rolland, D., Roussel, D., Merisier, M.J. (2016). Postharvest UV-C treatment of tomato fruits: Changes in simple sugars and organic acids contents during storage. LWT – Food Sci. Technol., 65, 557–564. https://doi.org/10.1016/j.lwt.2015.08.055
  12. Chaudhary, P.R, Jayaprakasha, G.K, Porat, R., Patil, B.S. (2015). Influence of modified atmosphere packaging on ‘Star Ruby’ grapefruit phytochemicals. J. Agric. Food. Chem., 63(3), 1020–1028. https://doi.org/10.1021/jf505278x
  13. Cisneros-Zevallos, L. (2003). The use of controlled postharvest abiotic stresses as a tool for enhancing the nutraceutical content and adding-value of fresh fruits and vegetables. J. Food Sci., 68(5), 1560–1565. https://doi.org/10.1111/j.1365-2621.2003.tb12291.x
  14. Costa, L., Vicente, A.R., Civello, P.M., Chaves, A.R., Martínez, G.A. 2006. UV-C treatment delays postharvest senescence in broccoli florets. Postharvest. Biol. Technol., 39(2), 204–210. https://doi.org/10.1016/j.postharvbio.2005.10.012
  15. Cui, H., Abdel-Samie, M.A.S., Lin, L. (2019). Novel packaging systems in grape storage – A review. J. Food Process Eng., 42(6), e13162. https://doi.org/10.1111/jfpe.13162
  16. Czapski, J., Szwejda, J. (2006). Thermal processing effects on antioxidant constituents and properties of tomatoes. Veg. Crops. Res. Bull., 65, 49–62.
  17. Darvishi, S., Fatemi, A., Davari, K. (2012). Keeping quality of use of fresh ‘Kurdistan’ strawberry by UV-C radiation. World. Appl. Sci. J., 17(7), 826–831.
  18. Drake, S.R., Elfving, D.C. (2002). Indicators of maturity and storage quality of ‘Lapins’ sweet cherry. HortTechnol., 12(4), 687–690. https://doi.org/10.21273/horttech.12.4.687
  19. Erkan, M., Wang, C.Y., Krizek, D.T. (2001). UV-C irradiation reduces microbial populations and deterioration in Cucurbita pepo fruit tissue. Environ. Exp. Bot., 45(1), 1–9. https://doi.org/10.1016/s0098-8472(00)00073-3
  20. Escalona, V.H., Aguayo, E., Martínez-Hernández, G.B., Artés, F. (2010). UV-C doses to reduce pathogen and spoilage bacterial growth in vitro and in baby spinach. Postharvest. Biol. Technol., 56(3), 223–231. https://doi.org/10.1016/j.postharvbio.2010.01.008
  21. Formica-Oliveira, A.C., Martínez-Hernández, G.B., Díaz-López, V., Artés, F., Artés-Hernández, F. (2017). Use of postharvest UV-B and UV-C radiation treatments to revalorize broccoli by products and edible florets. Innov. Food Sci. Emerg. Technol., 43, 77–83. https://doi.org/10.1016/j.ifset.2017.07.036
  22. Giuggioli, N.R., Girgenti, V., Baudino, C., Peano, C. (2015). Influence of modified atmosphere packaging storage on postharvest quality and aroma compounds of strawberry fruits in a short distribution chain. J. Food Process. Pres., 39(6), 3154–3164. https://doi.org/10.1111/jfpp.12390
  23. Irtwange, S.V. (2006). Application of modified atmosphere packaging and related technology in postharvest handling of fresh fruits and vegetables. Agric. Eng. Int. CIGR J., 4(8), 1–13.
  24. Kashiwabuchi, R.T., Khan, Y., Carvalho, F.R. de S, Hirai, F., Campos, M.S., McDonnell, P.J. (2012). Antimicrobial susceptibility of photodynamic therapy (UVA/riboflavin) against Staphylococcus aureus. Arq. Bras. Oftalmol., 75(6), 423–426. https://doi.org/10.1590/s0004-27492012000600011
  25. Krishnamurthy, K. (2006). Decontamination of milk and water by pulsed UV-light and infrared heating. Chapter 2. PhD thesis. Pennsylvania State University, pp. 23–44.
  26. Liu, C., Cai, L., Lu, X., Han, X., Ying, T. (2012). Effect of postharvest UVC irradiation on phenolic compound content and antioxidant activity of tomato fruit during storage. J. Integr. Agric., 11(1), 159–165. https://doi.org/10.1016/s1671-2927(12)60794-9
  27. Manzocco, L., Plazzotta, S., Maifreni, M., Calligaris, S., Anese, M., Nicoli, M.C. (2016). Impact of UV-C light on storage quality of fresh-cut pineapple in two different packages. LWT – Food Sci. Technol., 65, 1138–1143. https://doi.org/10.1016/j.lwt.2015.10.007
  28. Marquenie, D., Michiels, C., Geeraerd, A., Schenk, A., Soontjens, C., Van Impe, J. Nicolaï, B.M. (2002). Using survival analysis to investigate the effect of UV-C and heat treatment on storage rot of strawberry and sweet cherry. Int. J. Food Microbiol., 73(2-3), 187–196. https://doi.org/10.1016/s0168-1605(01)00648-1
  29. Martínez-Hernández, G.B., Gómez, P.A., Pradas. I., Artés, F., Artés-Hernández, F. (2011). Moderate UV-C pretreatment as a quality enhancement tool in fresh-cut Bimi® broccoli. Postharvest. Biol. Technol., 62(3), 327–337. https://doi.org/10.1016/j.postharvbio.2011.06.015
  30. Mercier, J., Baka, M., Reddy, B., Corcuff, R., Arul, J. (2001). Shortwave ultraviolet irradiation for control of decay caused by Botrytis cinereain bell pepper: induced resistance and germicidal effects. J. Am. Soc. Hortic. Sci., 126(1), 128–133. https://doi.org/10.21273/jashs.126.1.128
  31. Michailidis, M., Karagiannis, E., Polychroniadou, C., Tanou, G., Karamanoli, K., Molassiotis, A. (2019). Metabolic features underlying the response of sweet cherry fruit to postharvest UV-C irradiation. Plant Physiol. Biochem., 144, 49–57. https://doi.org/10.1016/j.plaphy.2019.09.030
  32. Pan, J., Vicente, A.R., Martinez, G.A., Chaves, A.R., Civello, P.M. (2004). Combined use of UV-C irradiation and heat treatment to improve postharvest life of strawberry fruit. J. Sci. Food. Agric., 84(14), 1831–1838. https://doi.org/10.1002/jsfa.1894
  33. Park, M.H. Kim, J.G. (2014). Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biol. Technol., 100, 109–112. https://doi.org/10.1016/j.postharvbio.2014.09.013
  34. Perkins-Veazie, P., Collins, J.K., Howard, L. (2008). Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest. Biol. Technol., 47(3), 280–285. https://doi.org/10.1016/j.postharvbio.2007.08.002
  35. PN-90/A-75101/07. Fruit and vegetable products – Preparation of samples and testing methods – Determination of sugar content and nonsugar extract. PKNMiJ (in Polish).
  36. Sandhya (2010). Modified atmosphere packaging of fresh produce: Current status and future needs. LWT – Food Sci. Technol., 43(3), 381–392. https://doi.org/10.1016/j.lwt.2009.05.018
  37. Stratil, P., Klejdus, B., Kubáň, V. (2006). Determination of total content of phenolic compounds and their antioxidant activity in vegetables evaluation of spectrophotometric methods. J. Agric. Food. Chem., 54(3), 607–616. https://doi.org/10.1021/jf052334j
  38. Tomaszewska-Sowa, M., Figas, A., Keutgen, N., Keutgen, A.J. (2015). Establishing an efficient explant superficial sterilization protocol for in vitro micropropagation of bear’s garlic (Allium ursinum L.). Herba Pol., 61(4), 66–77. https://doi.org/10.1515/hepo-2015-0032
  39. Wang, C.Y., Chen, C.T., Wang, S.Y. (2009). Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food. Chem., 117(3), 426–431. https://doi.org/10.1016/j.foodchem.2009.04.037
  40. Yen, S., Sokolenko, S., Manocha, B., Patras, A., Daynouri-Pancino, F., Blondeel, E.J.M., Sasges, M., Aucoin, M.G. (2014). Treating cell culture media with UV irradiation against adventitious agents: Minimal impact on CHO performance. Biotechnol. Prog., 30(5), 1190–1195. https://doi.org/10.1002/btpr.1942
  41. Zhang, W., Jiang, W. (2019). UV treatment improved the quality of postharvest fruits and vegetables by inducing resistance. Trends Food Sci. Technol., 92, 71–80. https://doi.org/10.1016/j.tifs.2019.08.012

Downloads

Download data is not yet available.

Inne teksty tego samego autora

1 2 > >> 

Podobne artykuły

1 2 3 4 5 6 7 8 9 10 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.