Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 19 Nr 2 (2020)

Artykuły

DOES SILICON INCREASE THE TOLERANCE OF A SENSITIVE PEPPER GENOTYPE TO SALT STRESS?

DOI: https://doi.org/10.24326/asphc.2020.2.9
Przesłane: 24 kwietnia 2020
Opublikowane: 2020-04-24

Abstrakt

We evaluated the growth performance, ion regulation, osmotic potential, and chlorophyll content of two pepper (Capsicum annuum) genotypes with different salinity tolerance levels (Karaisali is tolerant and Demre is sensitive to salinity) under saline conditions with the application of silicon (Si). Plants were grown in pots filled with vermiculite in control or saline conditions [150 mM sodium chloride (NaCl)] with or without 2 mM Si from potassium silicate for 60 days after sowing. Better growth effects due to Si application were observed in the sensitive pepper Demre than in Karaisali, particularly, the root and fruit growth were remarkably enhanced in Demre. Furthermore, Si application reduced sodium (Na) and chloride (Cl) concentrations and increased potassium (K) and calcium (Ca) concentrations in the leaves and roots. The reduction in Na concentration in the leaves due to Si application was 9% and 2% in Demre and Karaisali, respectively. Under saline conditions, the increase in K concentration due to Si application in the leaves was 11% and 14% in Demre and Karaisali, respectively. In addition, Si application resulted in an increase in K/Na ratios in the leaves by 22% and 17% in Demre and Karaisali, respectively, in the presence of 150 mM NaCl. The increase in Ca concentration in the roots due to Si application was 55% in Demre compared with only 9% in Karaisali. The addition of NaCl decreased the chlorophyll concentration in both the genotypes, but Si application increased it. This increase in chlorophyll concentration was higher in Demre than in Karaisali. Si application allowed both the genotypes to maintain higher osmotic potentials than those in untreated plants. As a result, it may be claimed that under salt stress, Si application has a more alleviative effect on the susceptible pepper genotypes (Demre) than on the tolerant one (Karaisali). This information could be useful for the practical application of Si under saline conditions.

Bibliografia

  1. Abbas, T., Balal, R.M., Shahid, M.A., Pervez, M.A., Ayyub, C.M., Aqueel, M.A., Javaid, M.M. (2015). Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiol. Plant., 37. DOI: 10.1007/s11738-014-1768-5
  2. Akram, M.S., Athar, H.U.R., Ashraf, M. (2007). Improving growth and yield of sunflower (Helianthus annuus L.) by foliar application of potassium hydroxide (KOH) under salt stress. Pakistan J. Bot., 39, 769–776.
  3. Altuntas, O., Dasgan, H.Y., Akhoundnejad, Y. (2016). Silicon nutrition ameliorates salt stress of Capsicum annuum L. by ion regulation. XVI Eucarpia Capsicum and Eggplant Meeting Kecskemet, Hungary 12–14 September 2016, Proceedings, 465–469.
  4. Ashraf, M., Akram, N.A. (2009). Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol. Adv., 27, 744–752.
  5. Ashraf, M.R., Ahmad, R., Bhatti, A.S., Afzal, M., Sarwar, A., Maqsood, M.A., Kanwal, S. (2010a). Amelioration of salt stress in sugarcane (Saccharum officinarum L.) by supplying potassium and silicon in hydroponics. Pedosphere, 20, 153–162. DOI: 10.1016/S1002-0160(10)60003-3
  6. Ashraf, M., Afzal, M., Ahmed, R., Mujeeb, F., Sarwarn, A., Ali, L. (2010b). Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant Soil, 326, 381–391. DOI: 10.1007/s11104-009-0019-9
  7. Awada, S., Campbell, W.F., Dudley, L.M., Jurinak, J.J., Khan, M.A. (1995). Interactive effects of sodium chloride, sodium sulfate, calcium sulfate, and calcium chloride on snapbean growth, photosynthesis, and ion uptake. J. Plant Nutr., 18, 889–900. DOI: 10.1080/01904169509364946
  8. Boursiac, Y., Chen, S., Luu, D.T., Sorieul, M., Dries, N. vanden, Maurel, C. (2005). Early effects of salinity on water transport in Arabidopsis roots. Plant Physiol., 139, 790–805. DOI: 10.1104/pp.105.065029
  9. Chinnusamy, V., Jagendorf, A., Zhu, J. (2005). Understanding and improving salt tolerance in plants. Crop Sci., 45, 437–448. DOI: 10.2135/cropsci2005.0437
  10. Dasgan, H.Y., Aktas, H., Abak, K., Cakmak, I. (2002). Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses. Plant Sci., 163, 695–703. DOI: 10.1016/S0168-9452(02)00091-2
  11. Epstein, E. (2001). Chapter 1 Silicon in plants: Facts vs. concepts. Stud. Plant Sci., 8, 1–15. DOI: 10.1016/S0928-3420(01)80005-7
  12. Evelin, H., Kapoor, R., Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann. Bot., 104, 1263–1280. DOI: 10.1093/aob/mcp251
  13. Gao, X., Zou, C., Wang, L., Zhang, F. (2006). Silicon decreases transpiration rate and conductance from stomata of maize plants. J. Plant Nutr., 29, 1637–1647. DOI: 10.1080/01904160600851494
  14. Gong, H.J., Chen, K.M., Chen, G.C., Wang, S.M., Zhang, C.L. (2003). Effect of silicon on growth of wheat under drought. J. Plant Nutr., 26, 1055–1063. DOI: 10.1081/PLN-120020075
  15. Habib, S.H., Kausar, H., Saud, H.M. (2016). Plant growth-promoting Rhizobacteria enhance salinity stress tolerance in Okra through ROS-scavenging enzymes. BioMed Res. Intern., 2016, 6284547, pp. 10. DOI: 10.1155/2016/6284547
  16. Hamayun, M., Sohn, E.Y., Khan, S.A., Shinwari, K., Khan, A.L., Lee, I.J. (2010). Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycıne max). Pak. J. Bot., 42, 1713–1722.
  17. Jones, J.B. (2001). Laboratory guide for conducting soil tests and plant analysis. In: Laboratory Guid for Conducting Soil Tests Plant Analysis, pp. 202.
  18. Khan, M.I.R., Syeed, S., Nazar, R., Anjum, N.A. (2012). An insight into the role of salicylic acid and jasmonic acid in salt stress tolerance. In: Phytohormones Abiotic Stress Tolerance of Plants, Khan, N.A., Nazar, R., Iqbal, N., Anjum, N.A. (eds.). Springer, Berlin, 277–300.
  19. Khan, W., Prithiviraj, B, Smith, D.L. (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. J. Plant Physiol., 160, 485–492. DOI: 10.1078/0176-1617-00865
  20. Li, C., Wang, P., Wei, Z., Liang, D., Liu, C., Yin, L., Jia, D., Fu, M., Ma, F. (2012). The mitigation effects of exogenous melatonin on salinity-induced stress in Malushupehensis. J. Pineal Res., 53, 298–306. DOI: 10.1111/j.1600-079X.2012.00999.x
  21. Liang, Y.C. (1999). Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil, 209, 217–224.
  22. Liang, Y.C., Qirong, S., Zhenguo, S. (1999). Effect of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil, 209, 217–224.
  23. Liang, Y.C., Shen, Q.R., Shen, Z.G., Ma, T.S. (1996). Effects of silicon on salinity tolerance of two barley cultivars. J. Plant Nutr., 19(1), 173–183. DOI: 10.1080/01904169609365115
  24. Liang, Y.C., Sun, W.C., Zhu, Y.G., Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ. Pollut., 147, 422–428. DOI: 10.1016/j.envpol.2006.06.008
  25. Liang, Y.C., Zhang, W.Q., Chen, J., Ding, R. (2005). Effect of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). J. Environ. Exper. Bot., 53, 29–37.
  26. Liu, J., Shi, D. (2010). Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt–alkaline mixed stress. Photosynthetica, 48, 127–134. DOI: 10.1007/s11099-010-0017-4
  27. Ma, J.F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. J. Soil Sci. Plant Nutr., 50, 11–18. DOI: 10.1080/00380768.2004.10408447
  28. Mansour, M.M.F. (2003). Transport proteins and salt tolerance in plants. Plant Sci., 164, 891–900.
  29. Marschner, P. (2012). Mineral nutrition of higher plants, 3rd ed. Elsevier, London.
  30. Munns, R., Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651–681. DOI: 10.1146/annurev.arplant.59.032607.092911
  31. Navarro, J.M., Garrido, C., Flores Martínez, V. (2010). The effect of salinity on yield and fruit quality of pepper grown in perlite. Span. J. Agric. Res., 8, 142–150.
  32. Niu, X., Bressan, R.A., Hasegawa, P.M., Pardo, J.M. (1995). Ion homeostasis in NaCl stress environments. Plant Physiol., 109, 735–742. DOI: 10.1104/pp.109.3.735
  33. Pitman, M.G., Läuchli, A. (2002). Global impact of salinity and agricultural ecosystems. In: Salinity: Environment Plants Molecules, Läuchli, A., Lüttge, U. (eds). Kluwer Academic Publishers, Dordrecht, 3–20.
  34. Rodrigues, F.A., Vale, FX.R., Korndorfer, G.H., Prabhu, A.S., Datnoff, L.E., Oliveira, A.M.A., Zambolim, L. (2003). Influence of silicon on sheath blight of rice. Braz. J. Crop Prot., 22, 23–29. DOI: 10.1016/s0261-2194(02)00084-4
  35. Romero-Aranda, M.R., Jurado, O., Cuartero, J. (2006). Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J. Plant Physiol., 163, 847–855. DOI: 10.1016/j.jplph.2005.05.010
  36. Shu, L.Z., Liu, Y.H. (2001). Effects of silicon on growth of maize seedlings under salt stress. Agro-Environ. Prot., 20, 38–40.
  37. Silva, E.N., Ribeiro, R.V., Ferreira-Silva, S.L., Viégas, R.A., Silveira, J.A.G. (2010). Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. J. Arid Envir., 74, 1130–1137.
  38. Yıldırım, E., Turan, M., Güvanç, İ. (2008). Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. J. Plant Nutr., 31, 593–612. DOI: 10.1080/01904160801895118
  39. Yin, L., Wan, S., Li, J., Tanaka, K., Oka, M. (2013). Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol. Plant., 35, 3099–3107. DOI: 10.1007/s11738-013-1343-5
  40. Zeng, L., Poss, J., Wilson, C., Draz, A.S.E., Grieve, C.M. (2003). Evaluation of salt tolerance in rice genotypes by physiological characters. Euphytica, 129, 281–292.
  41. Zhu, Y., Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agron. Sustain. Dev., 34, 455–472. DOI 10.1007/s13593-013-0194-1
  42. Zhu, Z., Wei, G., Li, J., Qian, Q., Yu, J. (2004). Silicon alleviates salt stress and increase antioxidant enzymes activity in leaves of salt stressed cucumber (Cucumis sativus L.). Plant Sci., 167, 527–533. DOI: 10.1016/j.plantsci.2004.04.020

Downloads

Download data is not yet available.

Podobne artykuły

<< < 10 11 12 13 14 15 16 17 18 19 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.