Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 21 Nr 2 (2022)

Artykuły

Postharvest hydrothermal treatments to maintain quality of ‘Newhall’ navel orange.

DOI: https://doi.org/10.24326/asphc.2022.2.12
Przesłane: 4 lutego 2021
Opublikowane: 2022-04-29

Abstrakt

Hydrothermal treatments are long known curing methods for the improvement of fruits resistance against storage conditions and for controlling fungal pathogens. The optimal conditions of the hydrothermal treatments significantly vary among species and varieties/cultivars. Present research was conducted to measure the storability effect of hot water dipping (HWD). First of all, three different hydrothermal temperatures (45, 50 and 55°C) tested for 3 different HWD durations (3, 4 and 5 min). Hereafter, main studies were performed with 50°C for 5 min HWD treatment which provided highest performance in preliminary experiments. In this main studies, physical, bio-chemical, physiological and enzymatic characteristics of the fruits were also tested with 20 days interval for 120 days of storage. Results suggested that the HWD treatment reduce respiration rate and enhance the activity of some enzymes, mainly polyphenol oxidase (PPO), peroxidase (POD) and superoxide dismutase (SOD), and helps to preserve physical and bio-chemical quality of ‘Newhall’ navel oranges.

Bibliografia

  1. Albertini, M.V., Carcouet, E., Pailly, O., Gambotti, C., Luro, F., Berti, L. (2006). Changes in organic acids and sugars during early stages of development of acidic and acidless citrus fruit. J. Agric. Food Chem., 54(21), 8335–8339. https://doi.org/10.1021/jf061648j DOI: https://doi.org/10.1021/jf061648j
  2. Alvindia, D.G., Acda, M.A. (2015). Revisiting the efficacy of hot water treatment in managing anthracnose and stem-end rot diseases of mango cv.‘Carabao’. Crop Prot., 67, 96–101. https://doi.org/10.1016/j.cropro.2014.09.016 DOI: https://doi.org/10.1016/j.cropro.2014.09.016
  3. Atrash, S., Ramezanian, A., Rahemi, M., Ghalamfarsa, R.M., Yahia, E. (2018). Antifungal effects of savory essential oil, gum arabic, and hot water in Mexican lime fruits. HortScience, 53(4), 524–530. https://doi.org/10.21273/HORTSCI12736-17 DOI: https://doi.org/10.21273/HORTSCI12736-17
  4. Ballester, A.R., Lafuente, M.T., González-Candelas, L. (2006). Spatial study of antioxidant enzymes, peroxidase and phenylalanine ammonia-lyase in the citrus fruit – Penicillium digitatum interaction. Postharvest Biol. Technol., 39(2), 115–124. https://doi.org/10.1016/j.postharvbio.2005.10.002 DOI: https://doi.org/10.1016/j.postharvbio.2005.10.002
  5. Cai, F., Lan-Ju, M., Xiao-Long, A., Gao, S., Tang, L., Chen, F. (2011). Lipid peroxidation and antioxidant responses during seed germination of Jatropha curcas. Int. J. Agric. Biol., 13(1). https://doi.org/10.4025/actasciagron.v40i1.34978
  6. Chen, J., Shen, Y., Chen, C., Wan, C. (2019). Inhibition of key citrus postharvest fungal strains by plant extracts in vitro and in vivo: a review. Plants, 8(2), 26. https://doi.org/10.3390/plants8020026 DOI: https://doi.org/10.3390/plants8020026
  7. Erkan, M., Pekmezci, M., Karasahin, I., Uslu, H. (2005). Reducing chilling injury and decay in stored ‘Clementine’ mandarins with hot water and curing treatments. Europ. J. Hortic. Sci. 70(4), 183.
  8. FAO. (2021). FAOSTAT Statistical Page. http://www.fao.org/faostat/en/#data [access 03.02.2021].
  9. Gao, Y., Kan, C., Wan, C., Chen, C., Chen, M., Chen, J. (2018). Quality and biochemical changes of navel orange fruits during storage as affected by cinnamaldehyde-chitosan coating. Sci. Hortic., 239, 80–86. https://doi.org/10.1016/j.scienta.2018.05.012 DOI: https://doi.org/10.1016/j.scienta.2018.05.012
  10. Hodges, D.M., DeLong, J.M., Forney, C.F., Prange, R.K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604–611. https://doi.org/10.1007/s004250050524 DOI: https://doi.org/10.1007/s004250050524
  11. Huan, C., Han, S., Jiang, L., An, X., Yu, M., Xu, Y., Yu, Z. (2017). Postharvest hot air and hot water treatments affect the antioxidant system in peach fruit during refrigerated storage. Postharvest Biol. Technol., 126, 1–14. https://doi.org/10.1016/j.postharvbio.2016.11.018 DOI: https://doi.org/10.1016/j.postharvbio.2016.11.018
  12. Imahori, Y., Bai, J., Baldwin, E. (2016). Antioxidative responses of ripe tomato fruit to postharvest chilling and heating treatments. Sci. Hortic., 198, 398–406. https://doi.org/10.1016/j.scienta.2015.12.006 DOI: https://doi.org/10.1016/j.scienta.2015.12.006
  13. Kahramanoğlu, İ. (2017). Introductory chapter: postharvest physiology and technology of horticultural crops. In: Postharvest handling, Kahramanoğlu, İ. (ed.). IntechOpen, London, 1–5. https://doi.org/10.5772/intechopen.69466 DOI: https://doi.org/10.5772/intechopen.69466
  14. Kahramanoğlu, İ., Chen, C., Chen, Y., Chen, J., Gan, Z., Wan, C. (2020a). Improving storability of “nanfeng” mandarins by treating with postharvest hot water dipping. J. Food Qual., 8524952. https://doi.org/10.1155/2020/8524952 DOI: https://doi.org/10.1155/2020/8524952
  15. Kahramanoğlu, İ., Usanmaz, S., Alas, T., Okatan, V., Wan, C. (2020b). Combined effect of hot water dipping and Cistus creticus L. leaf extracts on the storage quality of fresh Valencia oranges. Folia Hortic., 32(2), 337–350. https://doi.org/10.2478/fhort-2020-0029 DOI: https://doi.org/10.2478/fhort-2020-0029
  16. Kahramanoglu, İ., Wan, C. (2020). Effects of Phragmites australis (Cav.) Steud. root extracts on the storage quality of Valencia oranges. Int. J. Agric. For. Life Sci., 4(2), 248–254.
  17. Klessig, D.F., Malamy, J. (1994). The salicylic acid signal in plants. Plant Mol. Biol., 26(5), 1439–1458. https://doi.org/10.1007/978-94-011-0239-1_12 DOI: https://doi.org/10.1007/BF00016484
  18. Mayachiew, P., Devahastin, S., Mackey, B.M., Niranjan, K. (2010). Effects of drying methods and conditions on antimicrobial activity of edible chitosan films enriched with galangal extract. Food Res. Int., 43(1), 125–132. https://doi.org/10.1016/j.foodres.2009.09.006 DOI: https://doi.org/10.1016/j.foodres.2009.09.006
  19. Mohammadi, M., Kazemi, H. (2002). Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci., 162(4), 491–498. https://doi.org/10.1016/S0168-9452(01)00538-6 DOI: https://doi.org/10.1016/S0168-9452(01)00538-6
  20. Naser, F., Rabiei, V., Razavi, F., Khademi, O. (2018). Effect of calcium lactate in combination with hot water treatment on the nutritional quality of persimmon fruit during cold storage. Sci. Hortic., 233, 114–123. https://doi.org/10.1016/j.scienta.2018.01.036 DOI: https://doi.org/10.1016/j.scienta.2018.01.036
  21. Okatan, V. (2020). Antioxidant properties and phenolic profile of the most widely appreciated cultivated berry species: a comparative study. Folia Hortic., 32(1), 79–85. https://doi.org/10.2478/fhort-2020-0008 DOI: https://doi.org/10.2478/fhort-2020-0008
  22. Sekerli, L., Tuzcu, O. (2020). Fruit quality of “valencia” orange trees grafted on volkameriana and sour orange rootstocks grown in two different regions in Northern Cyprus. Pak. J. Bot., 52(5), 1803-1808. https://doi.org/10.30848/PJB2020-5(12) DOI: https://doi.org/10.30848/PJB2020-5(12)
  23. Sels, J., Mathys, J., De Coninck, B.M., Cammue, B.P., De Bolle, M.F. (2008). Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol. Biochem., 46(11), 941–950. https://doi.org/10.1016/j.plaphy.2008.06.011 DOI: https://doi.org/10.1016/j.plaphy.2008.06.011
  24. Sharma, R.R., Singh, D., Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol. Control, 50(3), 205–221. https://doi.org/10.1016/j.biocontrol.2009.05.001 DOI: https://doi.org/10.1016/j.biocontrol.2009.05.001
  25. Singh, S.P., Singh, Z. (2013). Dynamics of enzymatic and non-enzymatic antioxidants in Japanese plums during storage at safe and lethal temperatures. LWT – Food Sci. Technol., 50(2), 562–568. https://doi.org/10.1016/j.lwt.2012.08.008 DOI: https://doi.org/10.1016/j.lwt.2012.08.008
  26. Wan, C., Kahramanoğlu, İ., Chen, J., Gan, Z., Chen, C. (2020). Effects of hot air treatments on postharvest storage of Newhall navel orange. Plants, 9(2), 170. https://doi.org/10.3390/plants9020170 DOI: https://doi.org/10.3390/plants9020170
  27. Wang, L., Jin, P., Wang, J., Gong, H., Zhang, S., Zheng, Y. (2015). Hot air treatment induces resistance against blue mold decay caused by Penicillium expansum in sweet cherry (Prunus cerasus L.) fruit. Sci. Hortic., 189, 74‑80. https://doi.org/10.1016/j.scienta.2015.03.039 DOI: https://doi.org/10.1016/j.scienta.2015.03.039
  28. Wang, X., Xu, F., Wang, J., Jin, P., Zheng, Y. (2013). Bacillus cereus AR156 induces resistance against Rhizopus rot through priming of defense responses in peach fruit. Food Chem., 136(2), 400–406. https://doi.org/10.1016/j.foodchem.2012.09.032 DOI: https://doi.org/10.1016/j.foodchem.2012.09.032
  29. Yun, Z., Gao, H., Liu, P., Liu, S., Luo, T., Jin, S., Deng, X. (2013). Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment. BMC Plant Biol., 13(1), 1–16. https://doi.org/10.1186/1471-2229-13-44 DOI: https://doi.org/10.1186/1471-2229-13-44
  30. Zeng, K., Deng, Y., Ming, J., Deng, L. (2010). Induction of disease resistance and ROS metabolism in navel oranges by chitosan. Sci. Hortic., 126(2), 223–228. https://doi.org/10.1016/j.scienta.2010.07.017 DOI: https://doi.org/10.1016/j.scienta.2010.07.017

Downloads

Download data is not yet available.

Podobne artykuły

<< < 87 88 89 90 91 92 93 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.