Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 22 Nr 3 (2023)

Artykuły

The impact of selected agrotechnical treatments on the growth of wild garlic (Allium ursinum L.) leaves in field cultivation

DOI: https://doi.org/10.24326/asphc.2023.4889
Przesłane: 4 sierpnia 2022
Opublikowane: 2023-06-30

Abstrakt

Wild garlic (Allium ursinum L.) is a typical spring geophyte whose natural habitat is beech forests. The research aimed to assess the possibility of cultivating wild garlic in field conditions significantly different from those required by this plant, using environmentally friendly and unconventional treatments. This study aimed to evaluate the effect of selected agricultural practices (catch crop, shading plant, biopreparations) on the growth of wild garlic leaves grown in the field.

The results show that the biomass of catch crops and shade plants and biopreparations from marine algae are justified in cultivating wild garlic in field conditions regarding the leaf yield. Ploughing of phacelia biomass on a catchment soil with an unstable structure positively affected the growth of wild garlic, increasing the length of leaves, their number, and the length and width of the leaf blade. Winter turnip rape used as a shade plant caused an increase in the length of the leaves and the value of the FV/FM index (the quotient of the variable fluorescence to the maximum fluorescence), and also, depending on the year of the study, the length and width of the garlic leaf blade. Soaking the bulbs before planting in the ‘Kelpak SL’ solution increased the number of garlic leaves growing without turnip rape cover in the second and third years of cultivation. In the first year of vegetation, longer leaves with a larger leaf blade ensured the preparation was sprayed three times without pre-soaking the bulbs. Considering the biopreparations’ positive effect on the growth of garlic leaves and the FV/FM ratio values, their use is prospective regarding the increasing occurrence of dry years and is an alternative to plant irrigation.

Bibliografia

  1. Ahmed, M.E.M., Farm, E. (2015). Response of garlic plants (Allium sativum L.) to foliar application of some bio-stimulants. Egypt. J. Hort., 42(1), 613–625. https://doi.org/10.21608/ejoh.2015.1318 DOI: https://doi.org/10.21608/ejoh.2015.1318
  2. Błażewicz-Woźniak, M. (2005). Effect of no-tillage and mulching with cover crops on yield of parsley. Folia Hortic., 17(2), 3–10. Błażewicz-Woźniak, M., Budzińska, J., Mucha, S., Wach, D., Baltyn, M., Pitura, K. (2018). Impact of growing conditions and foliar nutrition on growth and development of Spanish bluebell (Hyacinthoides hispanica (Mill.) Rothm.). Acta Sci. Pol. Hortorum Cultus, 17(3), 137–146. https://doi.org/10.24326/asphc.2018.3.14 DOI: https://doi.org/10.24326/asphc.2018.3.14
  3. Błażewicz-Woźniak, M., Kęsik, T., Michowska, A.E. (2011). Flowering of bear garlic (Allium ursinum L.) cultivated in the field at varied nitrogen nutrition and mulching. Acta Sci. Pol. Hortorum Cultus, 10(3), 133–144.
  4. Błażewicz-Woźniak, M., Konopiński, M. (2013). Impact of cover crops and tillage on porosity of podzolic soil. Int. Agrophysics, 27(3), 247–255. https://doi.org/10.2478/v10247-012-0092-9 DOI: https://doi.org/10.2478/v10247-012-0092-9
  5. Błażewicz-Woźniak, M., Michowska, A. (2011). The growth, flowering and chemical composition of leaves of three ecotypes of Allium ursinum L. Acta Agrobot., 64(4), 171–180. https://doi.org/10.5586/aa.2011.058 DOI: https://doi.org/10.5586/aa.2011.058
  6. Błażewicz-Woźniak, M., Wach, D. (2012). The fertilizer value of summer catch crops preceeding vegetables and its variation in the changing weather conditions. Acta Sci. Pol. Hortorum Cultus, 11(3), 101–116.
  7. Błażewicz-Woźniak, M., Wach, D., Konopiński, M., Patkowska, E., Baltyn, M. (2015). Effect of cover crops on emergence and growth of carrot (Daucus carota L.) in no-plow and traditional tillage. Acta Agrobot., 68(1), 63–73. DOI: https://doi.org/10.5586/aa.2014.053
  8. Bodó, A., Farkas, Á., Nagy, D.U., Rudolf, K., Hoffmann, R., Kocsis, M., Morschhauser, T. (2021). Soil humus, iron, sulphate and magnesium content affect nectar traits of wild garlic (Allium ursinum L.). Plants, 10(3), 597, 12. DOI: https://doi.org/10.3390/plants10030597
  9. Bulgari, R., Franzoni, G., Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9(6), 306, 30. DOI: https://doi.org/10.3390/agronomy9060306
  10. Cetner, M.D., Dąbrowski, P., Samborska, A., Łukasik, I., Swoczyna, T., Pietkiewicz, S., Bąba, W., Kalaji, H.M. (2016). Zastosowanie pomiarów fluorescencji chlorofilu w badaniach środowiskowych [Chlorophyll fluorescence measurements in environmental studies]. Kosmos, 65(2), 197–205.
  11. Dobromilska, R., Gubarewicz, K. (2008). Influence of Bio-algeen S-90 on the yield and quality of small-sized tomato. In: Biostimulators in modern agriculture: solanaceous crops, Dąbrowski, T. (ed.). Wieś Jutra, Warsaw, 7–12.
  12. Durlak, W. (2019). Wykorzystanie metody termicznej sap-flow do określenia przepływu wody w pędach Physocarpus opulifolius (L.) Maxim. i Spiraea japonica L. [The use of the sap-flow thermal method to determine the water flow in the shoots of Physocarpus opulifolius L. (Maxim.) and Spiraea japonica L. and methods of water stress limiting in these plants cultivated in containers]. Rozpr. Nauk. Uniw. Przyr. Lublin, 397.
  13. Fijałkowski, D., Chojnacka-Fijałkowska, E. (2009). Rośliny lecznicze na Lubelszczyźnie [Medicinal plants in the Lublin region]. LTN, Wyd. Olech, Lublin, 48–50.
  14. Grime, J.P., Hodgson, J.G., Hunt, R. (2014). Comparative plant ecology: a functional approach to common British species. Springer.
  15. Gupta, S., Stirk, W.A., Plačková, L., Kulkarni, M.G., Doležal, K., Van Staden, J. (2021). Interactive effects of plant growth-promoting Rhizobacteria and a seaweed extract on the growth and physiology of Allium cepa L.(onion). J. Plant Physiol., 153437. https://doi.org/10.1016/j.jplph.2021.153437 DOI: https://doi.org/10.1016/j.jplph.2021.153437
  16. Hæggström, C.A., Hæggström, E., Carlsson, R., von Numers, M. (2016). Allium ursinum (Alliaceae) in Finland. Memor. Soc. Fauna Flora Fen., 92, 54–78.
  17. Hassan, S.M., Ashour, M., Sakai, N., Zhang, L., Hassanien, H.A., Gaber, A., Ammar, G. (2021). Impact of seaweed liquid extract biostimulant on growth, yield, and chemical composition of cucumber (Cucumis sativus). Agriculture, 11(4), 320. https://doi.org/10.3390/agriculture11040320 DOI: https://doi.org/10.3390/agriculture11040320
  18. Jamiołkowska, A. (2014). Effect of some biotechnical preparations on the growth of sweet pepper plants in the field production. Ann. UMCS. Sec. EEE, Horticultura, 24(4), 61–70.
  19. Kęsik, T., Konopiński, M., Błażewicz-Woźniak, M., Mitura, R. (2002). Residual effect of no-tillage and cover crops in vegetables cultivation on soil aggregates formation and soil structure. Rocz. Akad. Rol. Pozn., Ogrodn., 35, 83–88.
  20. Kęsik, T., Błażewicz-Woźniak, M. (2008). The after-effect of conservation tillage of onion with mulch utilization made of spring rye and common vetch on the yield of carrot roots. Veg. Crops Res. Bull., 69, 39–50. DOI: https://doi.org/10.2478/v10032-008-0019-y
  21. Kęsik, T., Błażewicz-Woźniak, M., Michowska, A. E. (2011). Influence of mulching and nitrogen nutritionon bear garlic (Allium ursinum L.) growth. Acta Sci. Pol. Hortorum Cultus, 10(3), 221–233.
  22. Khan, W., Rayirath U.P., Subramanian, S., Jithesh M.N., Rayorath, P., Hodges, D.M., Critchley A.T., Craigie, J.S., Norrie, J., Prithiviraj B. (2009). Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Reg., 28(4), 386–399. https://doi.org/10.1080/01904167.2018.1504966 DOI: https://doi.org/10.1007/s00344-009-9103-x
  23. Khan, R.I., Hafiz, I.A., Shafique, M., Ahmad, T., Ahmed, I., Qureshi, A.A. (2018). Effect of pre-harvest foliar application of amino acids and seaweed (Ascophylum nodosum) extract on growth, yield, and storage life of different bell pepper (Capsicum annuum L.) cultivars grown under hydroponic conditions. J. Plant Nutr., 41(18), 2309–2319. DOI: https://doi.org/10.1080/01904167.2018.1504966
  24. Konopiński, M., Kęsik, T., Błażewicz-Woźniak, M. (2001). Wpływ mulczowania międzyplonowymi roślinami okrywowymi i uprawy zerowej na kształtowanie wilgotności i zagęszczenia gleby. Acta Agrophys., 45, 105–116.
  25. Lachowicz, S., Oszmiański, J., Wiśniewski, R. (2018). Determination of triterpenoids, carotenoids, chlorophylls, and antioxidant capacity in Allium ursinum L. at different times of harvesting and anatomical parts. Europ. Food Res. Technol., 244(7), 1269–1280. https://doi.org/10.1007/s00217-018-3042-3 DOI: https://doi.org/10.1007/s00217-018-3042-3
  26. Mancuso, S., Azzarello, E., Mugnai, S., Briand, X. (2006). Marine bioactive substances (IPA extract) improve ion fluxes and water stress tolerance in potted Vitis vinifera plants. Adv. Hortic. Sci., 20, 156–161.
  27. Matysiak, K., Kaczmarek, S., Kierzek, R. (2012). Wpływ wyciągu z alg morskich Ecklonia maxima (Kelpak SL) na rośliny rzepaku ozimego [Effect of algae Ecklonia maxima (Kelpak SL) on winter oilseed rape]. Rośl. Ol., 33(1), 81–88. https://doi.org/10.5604/12338273.1058592 DOI: https://doi.org/10.5604/12338273.1058592
  28. Mikiciuk, M., Dobromilska, R. (2014). Assessment of yield and physiological indices of small-sized tomato cv. ‘Bianka F1’ under the influence of biostimulators of marine algae origin. Acta Sci. Pol. Hortorum Cultus, 3(1), 31–41.
  29. Mitura, K., Lipińska, K.J., Świtkowski, M., Spychaj-Fabisiak, E. (2014). Bioregulator Kelpak – charakterystyka oraz zastosowanie [Kelpak bioregulator – characteristics and application]. In: Nauka niejedno ma imię. Część II. Nauki przyrodnicze [Science has many names. Part II. The natural sciences], Wyd. UTP w Bydgoszczy, 2, 125–134.
  30. Mystkowska, I.T. (2018). Biostimulators as a factor affecting the yield of edible potato. Acta Agroph., 25(3), 307–315. https://doi.org/10.31545/aagr/95109 DOI: https://doi.org/10.31545/aagr/95109
  31. Papenfus, H.B., Kulkarni, M.G., Stirk, W.A., Finnie, J.F., Van Staden, J. (2013). Effect of a commercial seaweed extract (Kelpak®) and polyamines on nutrient-deprived (N, P and K) okra seedlings. Sci. Hortic., 151, 142–146. https://doi.org/10.1016/j.scienta.2012.12.022 DOI: https://doi.org/10.1016/j.scienta.2012.12.022
  32. Parađiković, N., Teklić, T., Zeljković, S., Lisjak, M., Špoljarević, M. (2019). Biostimulants research in some horticultural plant species — A review. Food Energy Sec., 8(2), e00162. https://doi.org/10.1002/fes3.162 DOI: https://doi.org/10.1002/fes3.162
  33. Petropoulos, S.A., Di Gioia, F., Polyzos, N., Tzortzakis, N. (2020). Natural antioxidants, health effects and bioactive properties of wild Allium species. Current Pharmac. Des., 26(16), 1816–1837. https://doi.org/10.2174/1381612826666200203145851 DOI: https://doi.org/10.2174/1381612826666200203145851
  34. Płaza, A., Ceglarek, F., Próchnicka, M. (2009). Wpływ międzyplonów ścierniskowych na plon i strukturę plonu bulw ziemniaka [The influence of stubble catch crop on the yield and yield structure of potato tubers]. Fragm. Agron., 26(3), 137–145.
  35. Rola, K. (2012). Taxonomy and distribution of Allium ursinum (Liliaceae) in Poland and adjacent countries. Biologia, 67(6), 1080–1087. DOI: https://doi.org/10.2478/s11756-012-0101-2
  36. Sady, W. (2012). Nawożenie warzyw polowych [Fertilization of field vegetables]. Kraków, Plantpress.
  37. Shafeek, M.R., Helmy, Y.I., Omar, N.M. (2015). Use of some bio-stimulants for improving the growth, yield and bulb quality of onion plants (Allium cepa L.) under sandy soil conditions. Middle East J. Appl. Sci., 5(1), 68–75. https://doi.org/10.21608/hjsc.2018.59099 DOI: https://doi.org/10.21608/hjsc.2018.59099
  38. Shalaby, T.A., El-Ramady, H. (2014). Effect of foliar application of bio-stimulants on growth, yield, components, and storability of garlic (Allium sativum L.). Austr. J. Crop Sci., 8(2), 271–275.
  39. Sharma, S.H.S., Fleming, C., Selby, Ch., Rao, J.R., Trevor, M. (2014). Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol., 26, 465–490. https://doi.org/10.1007/s10811-013-0101-9 DOI: https://doi.org/10.1007/s10811-013-0101-9
  40. Sobolewska, D. (2018). Czosnek niedźwiedzi Allium ursinum: wielki powrót. Wyd. OSDW Azymut, Łódź.
  41. Sobolewska, D., Podolak, I., Makowska-Wąs, J. (2015).
  42. Allium ursinum: botanical, phytochemical and pharmacological overview. Phytochem. Rev., 14(1), 81–97. https://doi.org/10.1007/s11101-013-9334-0 DOI: https://doi.org/10.1007/s11101-013-9334-0
  43. Szczepanek, M., Wszelaczyńska, E., Pobereżny, J., Ochmian, I. (2017). Response of onion (Allium cepa L.) to the method of seaweed biostimulant application. Acta Sci. Pol. Hortorum Cultus, 16(2), 113–122.
  44. Truba, M., Jankowski, K., Sosnowski, J. (2012). The plants reaction on biological preparations treatment. Ochr. Środ. Zas. Nat., 53, 41–52.
  45. Załuski, T., Gawenda-Kempczyńska, D., Paszek, I., Łazowy-Szczepanowska, I. 2009. Stan zachowania i sposoby ochrony rzadkich składników flory Gorznieńsko-Lidzbarskiego Parku Krajobrazowego [Conservation status and protection methods of rare flora’s elements of Górzno-Lidzbark Landscape Park]. Przegl. Przyr., 20(3–4), 87–104.

Downloads

Download data is not yet available.

Inne teksty tego samego autora

1 2 > >> 

Podobne artykuły

<< < 12 13 14 15 16 17 18 19 20 21 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.