Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 22 Nr 5 (2023)

Artykuły

Foliar application of salicylic acid and proline to mitigate water deficit impact on purple coneflower (Echinacea purpurea (L.) Moench.)

DOI: https://doi.org/10.24326/asphc.2023.4964
Przesłane: 15 października 2022
Opublikowane: 2023-10-30

Abstrakt

The effects of foliar spraying of salicylic acid and proline on Echinacea purpurea under different soil moistures were investigated in the field conditions in the Southwest of Iran (2017–2019). The experiment treatments were the foliar application of salicylic acid (SA) and proline (both at 1 mM concentration) and 2 irrigation frequencies (6 and 10 every day based on 75–80% and 40–45% field capacity, respectively). The field experiment was set as a complete randomized block design with 3 replications. The volatile oils were analyzed using GC-FID and GC-MS. Germacrene D, p-cymene, β-caryophyllene, α-pinene, and β-bisabolene were detected as the main constituents. Deficit irrigation decreased the growth parameters of the plants; however, it improved the contents of the volatile oil and the major compounds of volatile oil. In addition, the maximum values of the volatile oil content and the main constituents of volatile oil were extracted from the plants under SA × water deficit treatment. In conclusion, the foliar spraying of SA under water deficit conditions was an applicable strategy to maintain and stabilize the growth and yield of E. purpurea.

Bibliografia

  1. Adams, R.P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corp., Carol Stream, 456, 544–545.
  2. Ahmadi, F., Samadi, A., Sepehr, E., Rahimi, A., Shabala, S. (2022). Morphological, phytochemical, and essential oil changes induced by different nitrogen supply forms and salinity stress in Echinacea purpurea L. Biocatal. Agric. Biotechnol., 43, 102396. https://doi.org/10.1016/j.bcab.2022.102396 DOI: https://doi.org/10.1016/j.bcab.2022.102396
  3. Alavi Samany, S.M., Ghasemi Pirbalouti, A., Malekpoor, F. (2022). Phytochemical and morpho-physiological changes of hyssop in response to chitosan-spraying under different levels of irrigation. Ind. Crops Prod., 176, 114330. https://doi.org/10.1016/j.indcrop.2021.114330 DOI: https://doi.org/10.1016/j.indcrop.2021.114330
  4. Babaei, K., Moghaddam, M., Farhadi, N., Ghasemi Pirbalouti, A. (2021). Morphological, physiological and phytochemical responses of Mexican marigold (Tagetes minuta L.) to drought stress. Sci. Hortic., 284, 110116. https://doi.org/10.1016/j.scienta.2021.110116 DOI: https://doi.org/10.1016/j.scienta.2021.110116
  5. Bates, L.S., Waldern, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant Soil., 39, 205–207. https://doi.org/10.1007/BF00018060 DOI: https://doi.org/10.1007/BF00018060
  6. Bohnert, H.J., Nelson, D.E., Jensen, R.G. (1995). Adaptations to environmental stresses. Plant Cell., 7(7), 1099–1111. https://doi.org/10.1105/tpc.7.7.1099 DOI: https://doi.org/10.2307/3870060
  7. Carvalho, M.E.A., Castro, P.R.C., Gaziola, S.A., Azevedo, R.A. (2018). Is seaweed extract an elicitor compound? Changing proline content in drought-stressed bean plants. Comun. Scientiae, 9(2), 292–297. https://doi.org/10.14295/CS.v9i2.2134 DOI: https://doi.org/10.14295/cs.v9i2.2134
  8. Cheplick, S., Sarkar, D., Bhowmik, P.C., Shetty, K. (2018). Improved resilience and metabolic response of transplanted blackberry plugs using chitosan oligosaccharide elicitor treatment. Plant Sci., 98(3), 717–731. https://doi.org/10.1139/CJPS-2017-0055 DOI: https://doi.org/10.1139/cjps-2017-0055
  9. Cozzolino, R., Malvagna, P., Spina, E., Giori, A., Fuzzati, N., Anelli, A., Garozzo, D., Impallomeni, G. (2006). Structural analysis of the polysaccharides from Echinacea angustifolia radix. Carbohyd. Polym., 65(3), 263–272. https://doi.org/10.1016/j.carbpol.2006.01.012 DOI: https://doi.org/10.1016/j.carbpol.2006.01.012
  10. Danesh-Shahraki, H., Pirbalouti, A.G., Rajabzadeh, F., Kachouei, M.A. (2023). Water deficit stress mitigation by the foliar spraying of salicylic acid and proline on the volatile oils and growth features of hyssop (Hyssopus officinalis L.). J. Essent. Oil-Bear. Plants., 26(1), 115–129. https://doi.org/10.1080/0972060X.2022.2160279 DOI: https://doi.org/10.1080/0972060X.2022.2160279
  11. Darvizheh, H., Zahedi, M., Abbaszadeh, B., Razmjoo, J. (2019). Changes in some antioxidant enzymes and physiological indices of purple coneflower (Echinacea purpurea L.) in response to water deficit and foliar application of salicylic acid and spermine under field condition. Sci. Hortic., 247, 390–399. https://doi.org/10.1016/j.scienta.2018.12.037 DOI: https://doi.org/10.1016/j.scienta.2018.12.037
  12. Es-sbihi, F.Z., Hazzoumi, Z., Benhima, R., Amrani Joutei, K. (2020). Effects of salicylic acid on growth, mineral nutrition, glandular hairs distribution and essential oil composition in Salvia officinalis L. grown under copper stress. Environ. Sustain., 3, 199–208. https://doi.org/10.1007/s42398-020-00109-x DOI: https://doi.org/10.1007/s42398-020-00109-x
  13. Ghasemi Pirbalouti, A., Rahmani Samani, M., Hashemi, M., Zeinali, H. (2014). Salicylic acid affects growth, essential oil and chemical compositions of thyme (Thymus daenensis Celak.) under reduced irrigation. Plant Growth Regul., 72, 289–301. https://doi.org/10.1007/s10725-013-9860-1 DOI: https://doi.org/10.1007/s10725-013-9860-1
  14. Ghasemi Pirbalouti, A., Malekpoor, F., Salimi, A., Golparvar, A., Hamedi, B. (2017). Effects of foliar of the application chitosan and reduced irrigation on essential oil yield, total phenol content and antioxidant activity of extracts from green and purple basil. Acta Sci. Pol. Hortorum Cultus, 16(6), 177–186. https://doi.org/10.24326/asphc.2017.6.16 DOI: https://doi.org/10.24326/asphc.2017.6.16
  15. Ghasemi Pirbalouti, A., Nekoei, M., Rahimmalek, M., Malekpoor, F. (2019). Chemical composition and yield of essential oil from lemon balm (Melissa officinalis L.) under foliar applications of jasmonic and salicylic acids. Biocatal. Agric. Biotechnol., 19, 1–5. https://doi.org/10.1016/j.bcab.2019.101144 DOI: https://doi.org/10.1016/j.bcab.2019.101144
  16. Güneri, M., Dalkılıç, Z. (2023). Effects of salicylic acid application on germination, growth and development of rough lemon (Citrus jambhiri Lush.) under salt stress. Acta Sci. Pol. Hortorum Cultus, 22, 13–26. https://doi.org/10.24326/asphc.2023.4798 DOI: https://doi.org/10.24326/asphc.2023.4798
  17. Hazzoumi, Z., Moustakime, Y., Joutei, K.A. (2019). Essential oil and glandular hairs: diversity and roles. In: Essential oils, El-Shemy, H.A. (ed.). IntechOpen. https://doi.org/10.5772/intechopen.86571 DOI: https://doi.org/10.5772/intechopen.86571
  18. Jafari, S., Garmdareh, S.E.H., Azadegan, B. (2019). Effects of drought stress on morphological, physiological, and biochemical characteristics of stock plant (Matthiola incana L.). Sci. Hortic., 253, 128–133. https://doi.org/10.1016/j.scienta.2019.04.033 DOI: https://doi.org/10.1016/j.scienta.2019.04.033
  19. Idrees, M., Naeem, M., Aftab, T., Khan, M.M.A. (2011). Salicylic acid mitigates salinity stress by improving antioxidant defense system and enhances vincristine and vinblastine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. Acta Physiol. Plant., 33, 987–999. https://doi.org/10.1007/s11738-010-0631-6 DOI: https://doi.org/10.1007/s11738-010-0631-6
  20. Janda, M., Ruelland, E. (2015). Magical mystery tour: salicylic acid signaling. Environ. Exp. Bot., 114, 117–128. https://doi.org/10.1016/j.envexpbot.2014.07.003 DOI: https://doi.org/10.1016/j.envexpbot.2014.07.003
  21. Khorasani, H., Rajabzadeh, F., Mozafari, H., Ghasemi Pirbalouti, A. (2023). Water deficit stress impairment of morphophysiological and phytochemical traits of Stevia (Stevia rebaudiana Bertoni) buffered by humic acid application. S. Afr. J. Bot., 154, 365–371. https://doi.org/10.1016/j.sajb.2023.01.030 DOI: https://doi.org/10.1016/j.sajb.2023.01.030
  22. Khorasaninejad, S., Álizadeh Ahmadabadi, A., Hemmati, K. (2018). The effect of humic acid on leaf morphophysiological and phytochemical properties of Echinacea purpurea L. under water deficit stress. Sci. Hortic., 239, 314–323. https://doi.org/10.1016/j.scienta.2018.03.015 DOI: https://doi.org/10.1016/j.scienta.2018.03.015
  23. Maghsoudi, E., Abbaspour, H., Ghasemi Pirbalouti, A., Saeidi-Sar, S. (2023). Influence of the foliar applications of paclobutrazol and 24-epibrassinolide on the quantitative and qualitative traits of sage (Salvia officinalis L.) volatile oil under different soil moisture conditions. J. Plant Growth Regul., 42, 5495–5506. https://doi.org/10.1007/s00344-023-10931-2 DOI: https://doi.org/10.1007/s00344-023-10931-2
  24. Mehrpooya, Z., Abdoli, M., Talebian, M.R. (2021). Effect of salicylic acid and yeast extract on caffeic acid derivatives production in Echinacea purpurea L. J. Medicinal Plants., 20(78), 36–47. https://doi.org/10.52547/jmp.20.78.36 DOI: https://doi.org/10.52547/jmp.20.78.36
  25. Momeni, M., Ghasemi Pirbalouti, A., Mousavi, A., Badi, H.N. (2020). Effect of foliar applications of salicylic acid and chitosan on the essential oil of Thymbra spicata L. under different soil moisture conditions. J. Essent. Oil-Bear. Plants., 23(5), 1142–1153. https://doi.org/10.1080/0972060X.2020.1801519 DOI: https://doi.org/10.1080/0972060X.2020.1801519
  26. Mousavi, A., Masoumeh, N., Ghilizadeh, A., Rahemi Karizaki, A. (2021). The Effect of elicitors on some physiological characteristics, essential oil percentage and yield in hyssop (Hyssopus officinalis L.) under different irrigation regimes. Env. Stresses Crop Sci., 14(2), 415–424. In Persian. https://doi.org/10.22077/escs.2020.2851.1740
  27. Sartip, H., Sirousmehr, A.R. (2017). [Evaluation of salicylic acid effects on growth, yield and some biochemical characteristics of cumin (Cuminum cyminum L.) under three irrigation regimes]. Env. Stresses Crop Sci., 10(4), 547–558. In Persian. https://doi.org/10.22077/escs.2017.21.1007
  28. Selmar, D., Kleinwachter, M. (2013). Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products. Plant Cell Physiol., 54(6), 817–826. https://doi.org/10.1093/pcp/pct054 DOI: https://doi.org/10.1093/pcp/pct054
  29. Shaykh Samani, Á., Ghasemi Pirbalouti, A., Yadegari, M., Rajabzadeh, F. (2023). [Evaluation of the foliar application effect of salicylic acid on the morpho-physiological and phytochemical traits of the essential oil from Satureja bachtiarica Bunge. under deficit irrigation conditions]. Eco-phytochem. J. Med. Plants., 10(4), 95–108. In Persian. https://doi.org/10.30495/ejmp.2022.1949355.1673
  30. Zhao, J., Davis, L.C., Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv., 23(4), 283–333. https://doi.org/10.1016/j.biotechadv.2005.01.003 DOI: https://doi.org/10.1016/j.biotechadv.2005.01.003

Downloads

Download data is not yet available.

Podobne artykuły

<< < 71 72 73 74 75 76 77 78 79 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.