Abstrakt
This study investigated the effects of biochar treatments on the growth, nutrient content and some biochemical properties of basil. Biochars obtained from two different biomasses, rice husk (RBC) and tomato harvest waste (TBC), were applied at a dose of 2% to the growing medium consisting of a 1 : 1 soil and peat mixture. No biochar-added medium (1 : 1 soil and peat) was used as a control. The experiment was established in a completely randomized design with six replications for each treatment. At the end of the study, the height, number of lateral branches, total herb weight, and leaf weight of the plants were measured. In addition, chlorophyll contents in SPAD (Soil Plant Analysis Development), different nutrients and total phenolics contents, and antioxidant activities were analyzed. As a result of the study, the effects of biochar treatments differed depending on the biomass source. RBC significantly increased plant height, total herb weight, and leaf weight while negatively affecting the number of lateral branches. TCB did not cause any significant variation in plant height and number of lateral branches. While RBC provided a slight increase in leaf weight compared to the control, it did not cause a significant change in plant height, total herb weight, and the number of lateral branches. Except for a slight increase in K content due to RBC application, both biochar treatments did not cause a significant increase in leaf nutrient content. While RBC treatment did not cause a significant change in total phenol, it caused an increase in antioxidant activity. TBC application decreased the SPAD value from 22.4 in the control to 20.4.
Bibliografia
- Al-Wabel, M., Usman, A.R.A., El-Naggar, A.H., Aly, A.A., Ibrahim, H.M., Elmaghraby, S., Al-Omran, A. (2014). Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi J. Biol. Sci., 22(4), 503–511. http://dx.doi.org/10.1016/j.sjbs.2014.12.003
DOI: https://doi.org/10.1016/j.sjbs.2014.12.003
- Asımgil, A. (1996). Şifalı bitkiler [Medicinal herbs]. Timaş Publications, İstanbul, pp. 352. In Turkish.
- Baytop, T. (1999). Türkiye’de bitkiler ile tedavi geçmişte ve bugün [Treatment with herbal in Turkey in the past and today]. 2nd Ed. Nobel Medicine Bookstores Ltd. Şti. Istanbul, 3–8. In Turkish.
- Borguini, R.G., Bastos, D.H.M., Moita-Neto, J.M., Capasso, F.S., da Silva Torres, E.A.F. (2013). Antioxidant potential of tomatoes cultivated in organic and conventional systems. Brazil. Arch. Biol. Technol., 56, 521–529. https://doi.org/10.1590/S1516-89132013000400001
DOI: https://doi.org/10.1590/S1516-89132013000400001
- Conte, P., Marsala, V., De Pasquale, C., Bubici, S., Valagussa, M., Pozzi, A., Alonzo, G. (2013). Nature of water-biochar interface interactions. GCB Bioenergy, 5(2), 116–121. https://doi.org/10.1111/gcbb.12009
DOI: https://doi.org/10.1111/gcbb.12009
- Eo, J., Park, K.C., Kim, M.H., Kwon, S.I., Song, Y.J. (2018). Effects of rice husk and rice husk biochar on root rot disease of ginseng (Panax ginseng) and on soil organisms. Biol. Agric. Hortic., 34(1), 27–39. https://doi.org/10.1080/01448765.2017.1363660
DOI: https://doi.org/10.1080/01448765.2017.1363660
- França, M.F.D.M.S., Vilela, M.S., Costa, A.P., Nogueira, I., Pires, M.D.C., Souza, N.O.S. (2017). Germination test and ornamental potential of different basil cultivars (Ocimum spp.). Ornam. Hortic., 23(4), 385–391. https://doi.org/10.14295/oh.v23i4.1080
DOI: https://doi.org/10.14295/oh.v23i4.1080
- Głodowska, M., Schwinghamer, T., Husk, B., Smith, D. (2017). Biochar based inoculants improve soybean growth and nodulation. Agric. Sci., 8(9), 1048–1064. https://doi.org/10.4236/as.2017.89076
DOI: https://doi.org/10.4236/as.2017.89076
- Günal, H., Bayram, Ö., Günal, E., Erdem, H. (2019). Characterization of soil amendment potential of 18 different biochar types produced by slow pyrolysis. Eurasian J. Soil Sci., 8(4), 329–339. https://doi.org/10.18393/ejss.599760
DOI: https://doi.org/10.18393/ejss.599760
- Jabborova, D., Ma, H., Bellingrath-Kimura, S.D., Wirth, S. (2021). Impacts of biochar on basil (Ocimum basilicum) growth, root morphological traits, plant biochemical and physiological properties and soil enzymatic activities. Scientia Hortic., 290. https://doi.org/10.1016/j.scienta.2021.110518
DOI: https://doi.org/10.1016/j.scienta.2021.110518
- Jeffrey, S., Verheijen, F.G.A., van der Velde, M., Bastos, A.C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ., 144(1), 175–187. https://doi.org/10.1016/j.agee.2011.08.015
DOI: https://doi.org/10.1016/j.agee.2011.08.015
- Kaçar, B., İnal, A. (2008). Bitki analizleri [Plant analysis]. Nobel Publ. Distribution Ltd. St. Publications, 1241, Sci. 63 (I ed.), Ankara. In Turkish.
- Karhu, K., Mattila, T., Bergström, I., Regina, K. (2011). Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – results from a short-term pilot field study. Agric. Ecosyst. Environ., 140(1–2), 309–313. https://doi.org/10.1016/j.agee.2010.12.005
DOI: https://doi.org/10.1016/j.agee.2010.12.005
- Lattanzio, V., Kroon, P.A., Quideau, S., Treutter, D. (2008). Plant phenolics – secondary metabolites with diverse functions. Recent Adv. Polyphenol Res., 1, 1–24. https://doi.org/10.1002/9781444302400.ch1
DOI: https://doi.org/10.1002/9781444302400.ch1
- Lehmann, J, da Silva, P., Steiner, C., Nehls, T., Zech, W., Glaser, B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil, 249, 343–357. https://doi.org/10.1023/A:1022833116184
DOI: https://doi.org/10.1023/A:1022833116184
- Lehmann, J., Gaunt, J., Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems – a review. Mitig. Adapt. Strateg. Global Change, 11, 403–427. https://doi.org/10.1007/s11027-005-9006-5
DOI: https://doi.org/10.1007/s11027-005-9006-5
- Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D. (2011). Biochar effects on soil biota – a review. Soil Biol. Biochem., 43(9), 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022
DOI: https://doi.org/10.1016/j.soilbio.2011.04.022
- Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J.O., Thies, J., Luizão, F.J., Petersen, J., Neves, E.G. (2006). Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J., 70(5), 1719–1730. https://doi.org/10.2136/sssaj2005.0383
DOI: https://doi.org/10.2136/sssaj2005.0383
- Lin, X.W., Xie, Z., Zheng, J.Y., Liu, Q., Bei, Q.C., Zhu, J.G. (2015). Effects of biochar application on greenhouse gas emissions, carbon sequestration and crop growth in coastal saline soil. Europ. J. Soil Sci., 66(2), 329–338. https://doi.org/10.1111/ejss.12225
DOI: https://doi.org/10.1111/ejss.12225
- Lucchini, P., Quilliam, R.S., DeLuca, T.H., Vamerali, T., Jones, D.L. (2014). Does biochar application alter heavy metal dynamics in agricultural soil? Agric., Ecosys. Environ., 184, 149–157. https://doi.org/10.1016/j.agee.2013.11.018
DOI: https://doi.org/10.1016/j.agee.2013.11.018
- Nelissen, V., Ruysschaert, G., Manka’Abusi, D., D’Hose, T., De Beuf, K., Al-Barri, B., Boeckx, P. (2015). Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. Europ. J. Agron., 62, 65–78. https://doi.org/10.1016/j.eja.2014.09.006
DOI: https://doi.org/10.1016/j.eja.2014.09.006
- Netto, A.T., Campostrini, E., de Oliveira, J.G., Bressan-Smith, R.E. (2005). Photosynthetic pigments, nitrogen, chlorophyll afluorescence and SPAD-502 readings in coffee leaves. Sci. Hort., 104(2), 199–209. https://doi.org/10.1016/j.scienta.2004.08.013
DOI: https://doi.org/10.1016/j.scienta.2004.08.013
- Nigussie, A., Kissi, E., Misganaw, M., Ambaw, G. (2012). Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. Am.-Eurasian J. Agric. Environ. Sci., 12(3), 369–376.
- Petruccelli, R., BriccoliBati, C., Carlozzi, P., Padovani, G., Vignozzi, N., Bartolini, G. (2015). Use of Azolla as a growing medium component in the nursery production of olive trees. Int. J. Basic Appl. Sci., 4, 333–339. https://doi.org/10.14419/ijbas.v4i4.4660
DOI: https://doi.org/10.14419/ijbas.v4i4.4660
- Ronsse, F., Van Hecke, S., Dickinson, D., Prins, W. (2013). Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy, 5(2), 104–115. https://doi.org/10.1111/gcbb.12018
DOI: https://doi.org/10.1111/gcbb.12018
- Saracoglu, O. (2018). Phytochemical accumulation of anthocyanin rich mulberry (Morus laevigata) during ripening. J. Food Measur. Character., 12(3), 2158–2163. https://doi.org/10.1007/s11694-018-9831-3
DOI: https://doi.org/10.1007/s11694-018-9831-3
- Singleton, V.L., Rossi, J.L. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Amer. J. Enol. Vitic., 16, 144–158.
DOI: https://doi.org/10.5344/ajev.1965.16.3.144
- Subedi, R., Taupe, N., Pelissetti, S., Petruzzelli, L., Bertora, C., Leahy, J.J., Grignani, C. (2016). Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: influence of pyrolysis temperature and feedstock type. J. Environ. Manag., 166, 73–83. https://doi.org/10.1016/j.jenvman.2015.10.007
DOI: https://doi.org/10.1016/j.jenvman.2015.10.007
- Wang, Y., Yin, R., Liu, R. (2014). Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. J. Anal. Appl. Pyrolysis, 110, 375–381. https://doi.org/10.1016/j.jaap.2014.10.006
DOI: https://doi.org/10.1016/j.jaap.2014.10.006
- Zhaoxiang, W., Huihu, L., Qiaoli, L., Changyan, Y., Faxin, Y. (2020). Application of bio-organic fertilizer, not biochar, in degraded red soil improves soil nutrients and plant growth. Rhizosphere, 16, 100264.
DOI: https://doi.org/10.1016/j.rhisph.2020.100264
Downloads
Download data is not yet available.