Abstrakt
Papaver somniferum is a medicinal plant of the Papaveraceae family that has traditionally been used for diet or its therapeutic value for thousands of years. Mainly, morphine and noscapine alkaloids exhibit anti-analgesic and anti-cancer effects. However, gene expression patterns and regulatory elements, such as transcription factors between different tissues, still need to be detected. In this study, comparative in silico transcriptome analyses were conducted to examine the tissue-specificity of the benzylisoquinoline alkaloids (BIAs) biosynthetic genes and transcription factors (TFs) between morphine and noscapine cultivars. Analysis showed that BIA biosynthetic genes are expressed in a different pattern between two varieties. Results showed that some members of plant-specific secondary metabolites related to TF families, such as MYB, MADS-box, bHLH, NAC, and WRKY, are differentially expressed between tissues and varieties.
Bibliografia
- Agarwal, P., Pathak, S., Lakhwani, D., Gupta, P., Asif, M.H., Trivedi, P.K. (2015). Comparative analysis of transcription factor gene families from papaver somniferum: identification of regulatory factors involved in benzylisoquinoline alkaloid biosynthesis. Protoplasma, 253(3), 857–871. https://doi.org/10.1007/s00709-015-0848-8
DOI: https://doi.org/10.1007/s00709-015-0848-8
- Alagoz, Y., Gurkok, T., Zhang, B., Unver, T. (2016). Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci. Rep., 6(1). https://doi.org/10.1038/srep30910
DOI: https://doi.org/10.1038/srep30910
- Boke, H., Ozhuner, E., Turktas, M., Parmaksiz, I., Ozcan, S., Unver, T. (2015). Regulation of the alkaloid biosynthesis by MIRNA in opium poppy. Plant Biotechnol. J., 13(3), 409–420. https://doi.org/10.1111/pbi.12346
DOI: https://doi.org/10.1111/pbi.12346
- Cao, Y., Li, K., Li, Y., Zhao, X., Wang, L. (2020). MYB transcription factors as regulators of secondary metabolism in plants. Biology, 9(3), 61. https://doi.org/10.3390/biology9030061
DOI: https://doi.org/10.3390/biology9030061
- Chen, S., Niu, X., Guan, Y., Li, H. (2017). Genome-wide analysis and expression profiles of the MYB genes in Brachypodium Distachyon. Plant Cell Physiol., 58(10), 1777–1788. https://doi.org/10.1093/pcp/pcx115
DOI: https://doi.org/10.1093/pcp/pcx115
- Deng, X., Zhao, L., Fang, T., Xiong, Y., Ogutu, C., Yang, D., Vimolmangkang, S., Liu, Y., Han, Y. (2018). Investigation of benzylisoquinoline alkaloid biosynthetic pathway and its transcriptional regulation in Lotus. Hortic. Res., 5(1). https://doi.org/10.1038/s41438-018-0035-0
DOI: https://doi.org/10.1038/s41438-018-0035-0
- Desgagné-Penix, I., Farrow, S.C., Cram, D., Nowak, J., Facchini, P.J. (2012). Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy. Plant Mol. Biol., 79(3), 295–313. https://doi.org/10.1007/s11103-012-9913-2
DOI: https://doi.org/10.1007/s11103-012-9913-2
- Desgagné-Penix, I., Khan, M.F., Schriemer, D.C., Cram, D., Nowak, J., Facchini, P.J. (2010). Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures. BMC Plant Biol., 10(1). https://doi.org/10.1186/1471-2229-10-252
DOI: https://doi.org/10.1186/1471-2229-10-252
- Drea Sinéad, Hileman, L.C., de Martino, G., Irish, V.F. (2007). Functional analyses of genetic pathways controlling petal specification in poppy. Development, 134(23), 4157–4166. https://doi.org/10.1242/dev.013136
DOI: https://doi.org/10.1242/dev.013136
- Facchini, P.J., De Luca, V. (1994). Differential and tissue-specific expression of a gene family for tyrosine/DOPA decarboxylase in opium poppy. J. Biol. Chem., 269(43), 26684–26690. https://doi.org/10.1016/s0021-9258(18)47073-1
DOI: https://doi.org/10.1016/S0021-9258(18)47073-1
- Facchini, P.J., Bird, D.A., St-Pierre, B. (2004). Can arabidopsis make complex alkaloids? Trends Plant Sci., 9(3), 116–122. https://doi.org/10.1016/j.tplants.2004.01.004
DOI: https://doi.org/10.1016/j.tplants.2004.01.004
- Facchini, P.J., Hagel, J.M., Liscombe, D.K., Loukanina, N., MacLeod, B.P., Samanani, N., Zulak, K.G. (2007). Opium poppy: blueprint for an alkaloid factory. Phytochem. Rev., 6(1), 97–124. https://doi.org/10.1007/s11101-006-9042-0
DOI: https://doi.org/10.1007/s11101-006-9042-0
- Farrow, S.C., Hagel, J.M., Beaudoin, G.A., Burns, D.C., Facchini, P.J. (2015). Stereochemical inversion of (s)-reticuline by a cytochrome P450 fusion in opium poppy. Nat. Chem. Biol., 11(9), 728–732. https://doi.org/10.1038/nchembio.1879
DOI: https://doi.org/10.1038/nchembio.1879
- Gesell, A., Rolf, M., Ziegler, J., Díaz Chávez, M.L., Huang, F.-C., Kutchan, T.M. (2009). CYP719B1 is salutaridine synthase, the C-C phenol-coupling enzyme of morphine biosynthesis in opium poppy. J. Biol. Chem., 284(36), 24432–24442. https://doi.org/10.1074/jbc.m109.033373
DOI: https://doi.org/10.1074/jbc.M109.033373
- Grothe, T., Lenz, R., Kutchan, T.M. (2001). Molecular characterization of the salutaridinol 7-O-acetyltransferase involved in morphine biosynthesis in opium poppy Papaver somniferum. J. Biol. Chem., 276(33), 30717–30723. https://doi.org/10.1074/jbc.m102688200
DOI: https://doi.org/10.1074/jbc.M102688200
- Guo, L., Winzer, T., Yang, X., Li, Y., Ning, Z., He, Z., Teodor, R., Lu, Y., Bowser, T.A., Graham, I.A., Ye, K. (2018). The opium poppy genome and morphinan production. Science, 362(6412), 343–347. https://doi.org/10.1126/science.aat4096
DOI: https://doi.org/10.1126/science.aat4096
- Gurkok, T., Ozhuner, E., Parmaksiz, I., Özcan, S., Turktas, M., İpek, A., Demirtas, I., Okay, S., Unver, T. (2016). Functional characterization of 4′OMT and 7OMT genes in BIA biosynthesis. Front. Plant Sci., 7. https://doi.org/10.3389/fpls.2016.00098
DOI: https://doi.org/10.3389/fpls.2016.00098
- Gurkok, T., Turktas, M., Parmaksiz, I., Unver, T. (2014). Transcriptome profiling of alkaloid biosynthesis in elicitor induced opium poppy. Plant Mol. Biol. Rep., 33(3), 673–688. https://doi.org/10.1007/s11105-014-0772-7
DOI: https://doi.org/10.1007/s11105-014-0772-7
- Hagel, J.M., Facchini, P.J. (2013). Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant Cell Physiol., 54(5), 647–672. https://doi.org/10.1093/pcp/pct020
DOI: https://doi.org/10.1093/pcp/pct020
- Jin, J., Tian, F., Yang, D.-C., Meng, Y.-Q., Kong, L., Luo, J., Gao, G. (2016). PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res., 45(D1). https://doi.org/10.1093/nar/gkw982
DOI: https://doi.org/10.1093/nar/gkw982
- Kakeshpour, T., Nayebi, S., Rashidi Monfared, S., Moieni, A., Karimzadeh, G. (2015). Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L. Physiol. Mol. Biol. Plants, 21(4), 465–478. https://doi.org/10.1007/s12298-015-0325-z
DOI: https://doi.org/10.1007/s12298-015-0325-z
- Kim, D., Langmead, B., Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat. Methods, 12(4), 357–360. https://doi.org/10.1038/nmeth.3317
DOI: https://doi.org/10.1038/nmeth.3317
- Li, H.-L., Wei, L.-R., Guo, D., Wang, Y., Zhu, J.-H., Chen, X.-T., Peng, S.-Q. (2016). HbMADS4, a MADS-box transcription factor from Hevea brasiliensis, negatively regulates hbsrpp. Front. Plant Sci., 7. https://doi.org/10.3389/fpls.2016.01709
DOI: https://doi.org/10.3389/fpls.2016.01709
- Mishra, S., Triptahi, V., Singh, S., Phukan, U.J., Gupta, M.M., Shanker, K., Shukla, R.K. (2013). Wound induced tanscriptional regulation of benzylisoquinoline pathway and characterization of wound inducible PSWRKY transcription factor from Papaver somniferum. PLoS ONE, 8(1). https://doi.org/10.1371/journal.pone.0052784
DOI: https://doi.org/10.1371/journal.pone.0052784
- Sukumari Nath, V., Kumar Mishra, A., Kumar, A., Matoušek, J., Jakše, J. (2019). Revisiting the role of transcription factors in coordinating the defense response against citrus bark cracking viroid infection in commercial hop (Humulus lupulus L.). Viruses, 11(5), 419. https://doi.org/10.3390/v11050419
DOI: https://doi.org/10.3390/v11050419
- TMO. (2017). 2016 Poppy Report. Turkish Grain Board General Directorate, Ankara.
- Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., Pachter, L. (2010). Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28(5), 511–515. https://doi.org/10.1038/nbt.1621
DOI: https://doi.org/10.1038/nbt.1621
- Uimari, A., Strommer, J. (1997). Myb26: A MYB-like protein of pea flowers with affinity for promoters of phenylpropanoid genes. Plant J., 12(6), 1273–1284. https://doi.org/10.1046/j.1365-313x.1997.12061273.x
DOI: https://doi.org/10.1046/j.1365-313x.1997.12061273.x
- Wang, K., Li, M., Hakonarson, H. (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucl. Acids Res., 38(16). https://doi.org/10.1093/nar/gkq603
DOI: https://doi.org/10.1093/nar/gkq603
- Winzer, T., Gazda, V., He, Z., Kaminski, F., Kern, M., Larson, T.R., Li, Y., Meade, F., Teodor, R., Vaistij, F.E., Walker, C., Bowser, T.A., Graham, I.A. (2012). A papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science, 336(6089), 1704–1708. https://doi.org/10.1126/science.1220757
DOI: https://doi.org/10.1126/science.1220757
- Yamada, Y., Sato, F. (2013). Transcription factors in alkaloid biosynthesis. Int. Rev. Cell Mol. Biol., 339–382. https://doi.org/10.1016/b978-0-12-407695-2.00008-1
DOI: https://doi.org/10.1016/B978-0-12-407695-2.00008-1
- Zhao, X., Yuan, X., Chen, S., Fu, D.-Q., Jiang, C.-Z. (2019). Metabolomic and transcriptomic analyses reveal that a MADS-box transcription factor TDR4 regulates tomato fruit quality. Front. Plant Sci., 10. https://doi.org/10.3389/fpls.2019.00792
DOI: https://doi.org/10.3389/fpls.2019.00792
- Ziegler, J., Facchini, P.J., Geißler, R., Schmidt, J., Ammer, C., Kramell, R., Voigtländer, S., Gesell, A., Pienkny, S., Brandt, W. (2009). Evolution of morphine biosynthesis in opium poppy. Phytochemistry, 70(15‒16), 1696–1707. https://doi.org/10.1016/j.phytochem.2009.07.006
DOI: https://doi.org/10.1016/j.phytochem.2009.07.006
- Ziegler, J., Voigtländer, S., Schmidt, J., Kramell, R., Miersch, O., Ammer, C., Gesell, A., Kutchan, T. M. (2006). Comparative transcript and alkaloid profiling inpapaverspecies identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis. The Plant Journal, 48(2), 177–192. https://doi.org/10.1111/j.1365-313x.2006.02860.x
DOI: https://doi.org/10.1111/j.1365-313X.2006.02860.x
Downloads
Download data is not yet available.
-
Ma-Yin Wang,
Yu Ding,
Ye Zhang,
Lu Sun,
Xi-Qiang,
Dai-Cheng Hao,
Wei-Shi Li,
Min-Qiang,
Peng Ling,
Shang-Qian Xie,
Transcriptome analysis of genes involved in flower and leaf color of Oncidium by RNA-seq
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 22 Nr 5 (2023)
-
Tour Jan,
Ikram Ullah,
Bilal Muhammad,
_ Tariq,
Ali Mansoor,
Zaheer Ullah,
Muhammad Asif Nawaz,
EFFICIENT in vitro PROPAGATION OF Amaranthus viridis L. USING NODE EXPLANTS
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 19 Nr 4 (2020)
-
Justyna Leśniowska-Nowak,
Michał Nowak,
Magdalena Zapalska,
Karolina Dudziak,
Krzysztof Kowalczyk,
INFLUENCE OF CCC AND TRINEXAPAC-ETHYL ON THE EXPRESSION OF GENES INVOLVED IN GIBBERELLIC BIOSYNTHESIS AND METABOLISM PATHWAY IN ISOGENIC LINE WITH Rht12 DWARFING GENE
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 16 Nr 4 (2017)
-
Nastaran Rashidi,
Ramezan Ali Khavari-Nejad,
Parvin Ramak,
Sara Saadatmand,
THE EFFECT OF CHITOSAN ON GENE EXPRESSION, SOME MORPHOLOGICAL AND PHYSIOLOGICAL TRAITS OF SWEET BASIL (Ocimum basilicum L.) UNDER SALINITY STRESS
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 19 Nr 4 (2020)
-
Mirosława Cieślińska,
Aneliya Borisova,
MOLECULAR CHARACTERIZATION OF ‘Candidatus PHYTOPLASMA MALI’ STRAINS FROM BULGARIA AND POLAND
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 18 Nr 5 (2019)
-
Ye Zhao,
Yongqiang Zhang,
Xianfeng Guo,
Yan Ma,
Peng Zhang,
Hongling Liu,
Gang Liu,
Jing Guo,
CHINESE CABBAGE BrMYB34.2 TRANSCRIPTION FACTOR REGULATES INDOLIC GLUCOSINOLATES BIOSYNTHESIS IN Arabidopsis
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 19 Nr 1 (2020)
-
Barbara Skwaryło-Bednarz,
Agnieszka Jamiołkowska,
Marek Kopacki,
Elżbieta Patkowska,
Katarzyna Golan,
Patrycja Krasowska,
Hanna Klikocka,
Assessment of catalase soil activity under amaranth cultivation not exposed to chemical protection methods
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 21 Nr 5 (2022)
-
Marzena Parzymies,
Krystyna Pudelska,
Monika Poniewozik,
THE USE OF NANO-SILVER FOR DISINFECTION OF Pennisetum alopecuroides PLANT MATERIAL FOR TISSUE CULTURE
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 18 Nr 3 (2019)
-
Aylin Kabaş,
Ibrahim Celik,
Development of biotic stress resistant F1 interspecific hybrid rootstock derived from Solanum lycopersicum and Solanum habrochaites
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 20 Nr 5 (2021)
-
Marek Dąbski,
Marzena Parzymies,
Danuta Kozak,
Katarzyna Rubinowska,
Krzysztof Jóźwik,
INITIATION AND STABILIZATION OF A TRUMPET CREEPER (Campsis radicans (L.) Seem.) TISSUE CULTURES
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 13 Nr 1 (2014)
1 2 3 4 5 6 7 8 9 10 > >>
Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.