Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 17 Nr 6 (2018)

Artykuły

EFFECT OF POTASSIUM FERTILIZATION ON YIELD, GROWTH AND CHEMICAL COMPOSITION OF BASIL HERB

DOI: https://doi.org/10.24326/asphc.2018.6.14
Przesłane: 20 grudnia 2018
Opublikowane: 2018-12-20

Abstrakt

In the cultivation of herbal plants, besides the size of the crop, the quality of obtained raw material is extremely important, which is proven not only by the appearance and taste, but also biological value. Factors that affect these parameters include plant nutrition. The main nutrient affecting the correct course of metabolic processes in a plant is potassium. To obtain high yield in terms of quantity and quality, the nutritional requirements of plants must be met. The aim of the study was to determine the effect of potassium nutrition on the quality of basil herb. The experiment was established in a two-factor scheme, in which the factors were: potassium dose (0.5, 1.0, 1.5 g K·dm–3) and the type of potassium fertilizer (KCl, K2SO4, KCl + K2SO4). The yield of basil plants was influenced by the dose and type of potassium fertilizers used (0.5 g K·dm–3 – 92.5; 1.0 g K – 67.3; 1.5 g K – 69.75 g·plant–1). The highest content of L-ascorbic acid was found in basil plants fed with the average potassium dose (65.9 mg·100 g–1 FW). The least nitrates (V) were contained in basil fertilized with KCl in the highest dose of K (63 mg·100 g–1 FW). No effect of the dose and type of potassium fertilizer on the content of phosphorus and sulfur in the plant material, was recorded. The content of Ca and Mg was influenced by both the potassium dose and the type of potassium fertilizer. The most of these components was revealed by plants fed with KCl, and with the increase of the dose, the content of both these mineral components decreased. Chlorine content in the herb increased with the applied potassium dose, the effect on the concentration of chlorine in the plant material was exerted by the type of potassium fertilizer applied – the highest concentration of this element was recorded. The content of macroelements in the substrate from basil cultivation was influenced by the dose and type of potassium fertilizers used. The best quality parameters of basil were obtained after application of 1.0 g K·dm–3 substrate in the form of KCl + K2SO4.

Bibliografia

  1. Ali, Md.A., Hossain, M.A., Mondal, M.D.F., Farooque, A.M., (2003). Effect of nitrogen and potassium on yield and quality of carrot. Pak. J. Biol. Sci., 6(18), 1574–1577.
  2. Biesiada, A., Kuś, A. (2010). The effect of nitrogen fertilization and irrigation on yielding and nutritional status of sweet basil (Ocimum basilicum L.). Acta Sci. Pol. Hortorum Cultus, 9(2), 3–12.
  3. Buczak, J., Marciniak, J., (1990). Reduktaza azotanowa i reduktaza azotynowa – kluczowe enzymy asymilacji azotanów w roślinach wyższych. Wiad. Bot., 34, 19–32.
  4. Dzida, K., Jarosz, Z., (2006). Plonowanie i skład chemiczny majeranku ogrodowego (Origanum majorana L.) w zależności od zróżnicowanego nawożenia azotowo-potasowego. Acta Agrophys., 7(3), 561–566.
  5. Dzida, K. (2010). Nutrients contents in sweet basil (Ocimum basilicum L.) herb depending on calcium carbonate dose and cultivar. Acta Sci. Pol. Hortorum Cultus, 9(4), 143–151.
  6. Dzida, K., Jarosz, Z., Michałojć, Z., (2011). The effects of diversified potassium fertilization on the field and the chemical composition of Beta vulgaris L. Acta Sci. Pol., Hortorum Cultus, 10(4), 263–274.
  7. Dzida, K., (2013). Plon oraz wartość biologiczna ziela tymianku pospolitego (Thymus vulgaris L.) i cząbru ogrodowego (Satureia hortensis L.) w zależności od żywienia azotem i potasem. Wyd. UP, Lublin.
  8. Esmaili, E., Kapourchal, S.A., Malakouti, M.J., Homaee, M. (2008). Interactive effect of salinity and two nitrogen fertilizers on growth and composition of sorghum. Plant Soil Environ., 54(12), 537–546.
  9. Gaj, R., Klikocka, H., (2011). Wielofunkcyjne działanie siarki w roślinie – od żywienia do ochrony. Prog. Plant Prot./Post. Ochr. Rośl., 51(1), 33–44.
  10. Geetha, A., Rao, P.V., Reddy, D.V. Shaik, M. (2009). Effect of organic and inorganic fertilizers on macro and micro nutrient uptake, oil content, quality and herbage yield in sweet basil (Ocimum basilicum). Res. Crops, 10(3), 740–742.
  11. Ghahremani, A., Akbari, K., Yousefpour, M., Ardalani, H., (2014). Effects of nano-potassium and nano-calcium chelated fertilizers on qualitative and quantitative characteristics of Ocimum basilicum. IJPRS, 3(2), 235–241.
  12. Gierth, M., Mäser, P., (2007). Potassium transporters in plants-involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett., 581, 2348–2356.
  13. Gill, B.S., Randhawa, G.S., (1992). Effect of transplanting dates and stage of harvesting on the herb and oil yields of French basil (Ocimum basilicum L.). Indian Perfum., 36, 102–110.
  14. Hanafy Ahmed, A.H., Khalil, M.K., Farrag Amal, M. (2000). Nitrate accumulation, growth, yield and chemical composition of rocket (Eruca vesicaria subsp. sativa) plants as affected by NPK fertilization, kinetin and salicylic acid. ICEHM Cairo Univ., Egypt, 495–508.
  15. Hołubowicz-Kliza, G., (2012). Polowa uprawa ziół. Wyd. IUNG, Puławy.
  16. Janda, K., Kasprzak, M., Wolska, J., (2015). Witamina C – budowa, właściwości, funkcje i występowanie. Pom. J. Life Sci., 61(4), 419–425.
  17. Jarosz, Z., Dzida, K., (2006). Wpływ zróżnicowanego nawożenia azotowo-potasowego na plonowanie i skład chemiczny sałaty. Acta Agrophys., 7(3), 591–597.
  18. Kiczorowska, B., Klebaniuk, R., Bąkowski, M., Al-Yasiry, A.R.M.H. (2015). Culinary herbs – the nutritive value and content of minerals. J. Elementol., 20(3), 599–608.
  19. Klikocka, H., (2005). Sulphur status in environment. J. Elementol., 10(3), 625–643.
  20. Lebaudy, A., Very, A.A., Sentenac, H., (2007). K+ channel activity in plants: genes, regulations and functions. FEBS Lett., 581, 2357–2366.
  21. Lester, G.E., Jifon, J.L., Makus, D.J., (2010). Impact of potassium nutrition on food quality of fruits and vegetables: a condensed and concise review of the literature. Better Crop., 94(1), 18–21.
  22. Li, W., Xu, G., Alli, A., Yu, L., (2018). Plant HAK/KUP/KT K+ transporters: Function and regulation. Semin. Cell Dev. Biol., 74, 133–141.
  23. Matsumoto, S.N., Araujo, G.S., Viana, A.E.S., (2013), Growth of sweet basil depending on nitrogen and potassium doses. Hortic. Bras., 31, 489–493.
  24. Moszczyński, P., Pyć, R, (1999). Biochemia witamin. Witaminy lipofilne i kwas askorbinowy. Cz. II. PWN, Warszawa, 112–136.
  25. Nguyen, P.M., Niemeyer, E.D., (2008). Effects to nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.). J. Agric. Food Chem., 56, 8685–8691.
  26. Nowosielski, O., (1988). Zasady opracowywania zaleceń nawozowych w ogrodnictwie. PWRiL, Warszawa.
  27. Nurzyńska-Wierdak, R., (2012). Ocimum basilicum L. – wartościowa roślina przyprawowa, lecznicza i olejkodajna. Praca przeglądowa. Ann. UMCS. sec. EEE Hotriculturae, 22(1), 21–30.
  28. Nurzyńska Wierdak, R., (2013). Does mineral fertilization modify essential oil content and chemical composition in medicinal plants? Acta Sci. Pol. Hortorum Cultus, 12(5), 3–16.
  29. Nurzyńska-Wierdak, R., Rożek, E., Borowski, B., Dzida, K., Jarosz, Z., (2012). Changes in the content of some macronutrients in basil herbage induced by different nitrogen and potassium fertilization rates. J. Elementol., 17(3), 465–477.
  30. Omer, E.A., Elsayed, A.G.A., El-Lathy, A., Khattab, M.E., Sabra, A.S. (2008). Effect of the nitrogen fertilizer forms and time their application on the yield of herb and essential oil of Ocimum americanum L. Herba Pol., 54(1), 34–46.
  31. Ostrowska, A., Gawliński, S., Szczubiałka, Z., (1991). Metody analizy i oceny właściwości gleb i roślin. Instytut Ochrony Środowiska, Warszawa.
  32. PN-A-04019: 1998. Produkty spożywcze − Oznaczanie zawartości witaminy C. PKN, Warszawa.
  33. Prakasa Rao, E.V.S., Puttanna, K., Ganesha Rao, R.S., Ramesh, S., (2007). Nitrogen and potassium nutrition of French Basil (Ocimum basilicum L.). J. Spices Arom. Crops, 16(2), 99–105.
  34. Rahimi, M., Asghari poor, M.R., Ramroudi, M., Rasoolizadeh, M.A., (2014). Effects of potassium and phosphorus fertlizers on arsenic accumulation and plant growth of two basil cultivars. Bull. Environ. Pharmacol. Life Sci., 2(5), 79–85.
  35. Rao, E.V.P., Puttana, K., Ganesha Rao, R.S., Ramesh, S., (2007). Nitrogen and potassium nutrition of French basil (Ocimum basilicum Linn.). J. Spices Aromat. Plants, 16(2), 99–105.
  36. Saha, S., Monroe, A., Day, M.R., (2016). Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.). Ann. Agric. Sci., 61, 181–186.
  37. Salas-Pérez, L., Fornari-Reale, T., Preciado-Rangel, P.,Garcia-Hernández, J.L., Sánchez-Chávez, E., Troyo-Diéguez, E., (2018). Cultivar variety and added potassium influence the nutraceutical and antioxidant content in hydroponically grown basil (Ocimum basilicum L.). Agronomy, 8(13), 1–14.
  38. Shehu, H.E., Kwari, J.D., Sandabe, M.K., (2010). Effects of N, P and K fertilizers on yield, content and uptake of N, P and K by sesame (Sesamus indicum). Int. J. Agric. Biol., 12(6), 845–850.
  39. Syers, K.J., (2005). Soil and plant potassium in agriculture a review. Naw. Nawoż., 3(24), 9–36.
  40. Szymańska-Pasternak, J., Janicka, A., Bober, J. (2014). Witamina C jako oręż w walce z rakiem. Onkol. Prakt. Klin., 7(1), 9–23.
  41. Taie, H.A., Salama, Z.A, Radwan, S., (2010). Potential activity of basil plants as a source of antioxidants and anticancer agents as affected by organic and bioorganic fertilization. Not. Bot. Hortic. Agrobot. Cluj Napoca, 38(1), 119–127.
  42. Wang, Y., Wu, W.H., (2017). Regulation of potassium transport and signaling in plants. Curr. Opinion Plant Biol., 39, 123–128.

Downloads

Download data is not yet available.

Inne teksty tego samego autora

1 2 3 4 > >> 

Podobne artykuły

<< < 13 14 15 16 17 18 19 20 21 22 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.