Abstract
Excess of boron in soil and irrigation water is a serious constrain to crop production in many areas of the World as well as in Turkey. A pot experiment was carried out with to screen safflower cultivars in order to investigate the effects of boron toxicity stress on early growth and ions composition. Three safflower cultivars
(Carthamus tinctorius cv. Balci, Yenice, Remzi Bey) were grown in pots containing alkaline and potassium rich soil, additionally supplemented with 0, 4, 8, 16, 32, 64 and 128 mg kg–1 boron. Chlorophyll content of all cultivars decreased with excessive boron levels. Plant height, shoot fresh and dry weight significantly increased at 4 mg kg–1 boron level followed by sharp decline with the other treatments. Boron content of cultivars increased and the highest amount was observed at 128 mg kg–1 boron level. Sodium content of all cultivars gradually increased with increase in B concentration. Whereas, potassium and calcium content reduced with increased B. Phosphorus content of all cultivars were least at 128 mg kg boron level. Results revealed that cv. balci appeared to tolerant to boron in soil up to 32 mg kg–1 and can be recommended for growing and breeding material for boron rich soils of Central Anatolia.
References
Ahmed, N., Muhammad, A., Ahmad, F. (2008). Boron toxicity in irrigated cotton (Gossypium hirsutum L.). Pak. J. Bot., 40, 2443–2452.
Ahmed, N., Muhammad, A., Ahmad, F., Ullah, M.A., Javaid, Q., Ali, M.A. (2011). Impact of boron fertilization on dry matter production and mineral constitution of irrigated cotton. Pak. J. Bot., 43(6), 2903–2910.
Al-Shatti, A., Redha, A., Suleman, P., Al-Hasan, R. (2014). The Allelopathic Potential of Conocarpus lancifolius (Engl.) Leaves on Dicot (Vigna sinensis L.), Monocot (Zea mays L.) and Soil-Borne Pathogenic Fungi. Am. J. Plant Sci., 5, 2889–2903. DOI:10.4236/ajps.2014.519304.
Atalay, E., Gezgin, S., Babaoğlu, M. (2003). Buğday (Triticum durum Desf.) ve arpa (Hordeum vulgare L.) in vitro fidelerinin bor alımının ICP-AES ile tespiti. S.Ü. Ziraat Fak. Derg., 17, 47–52.
Ayvaz, M., Koyuncu, M., Guven, A., Fagerstedt, K.V. (2012). Does boron affect hormone levels of barley cultivars? Eurasia. J. Biosci., 6, 113–120.
Ayvaz, M., Guven, A., Blokhina, O., Fagerstedt, K.V. (2016). Boron stress, oxidative damage and antioxidant protection in potato cultivars (Solanum tuberosum L.).
Acta Agric. Scand., B-Soil Plant Sci., 66, 302–316, DOI: 10.1080/09064710.2015.1109133.
Bonilla, I., El-Hamdaoui, A., Bolaños, L. (2004). Boron and calcium increase Pisum sativum seed germination and seedling development under salt stress. Plant Soil,
267, 97–107.
Brown, P.H., Bellaloui, N., Wimmer, M.A., Bassil, E.S., Ruiz, J., Hu, H., Pfeffer, H., Dannel, F., Romheld, V. (2002). Boron in plant biology. Plant Biol., 4(2), 205–223.
Cervilla, L.M., Blasco, B.A., Rios, J.J., Romero, L., Ruiz, J.M. (2007). Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Ann. Bot., 100(4), 747–756.
Çikili, Y., Samet, H., Dursun, S. (2015). Mutual effects of boron and zinc on peanut (Arachis hypogea L.) growth and mineral nutrition. Com. Soil Sci. Plant Anal., 46(5), 641–651.
Day, S. (2016a). Determining the impact of excessive boron on some growth characters and some nutrients at the early growth stage of sunflower (Helianthus annuus
L.). Fresen Environ. Bull., 25(10), 4294–4298.
Day, S. (2016b). Determining the diversity among four sunflower (Helianthus annuus L.) cultivars under boron stress. Fresen Environ. Bull., 25(11), 4944–4951.
El-Feky, S.S., Shintinawy, F.A., Shaker, E.M., El-Din, H.A.S. (2012). Effect of elevated boron concentrations on the growth and yield of barley (Hordeum vulgare L.) and alleviation of its toxicity using different plant growth modulators. Aust. J. Crop Sci., 6, 1687–1695.
El-Shintinawy, F. (1999). Structural and functional damage caused by boron deficiency in sunflower leaves. Photosynthetica, 36, 565–573.
Eraslan, F., Inal, A., Gunes, A., Alpaslan, M. (2007). Boron toxicity alters nitrate reductase activity, proline accumulation, membrane permeability and mineral constituents of tomato and pepper plants. J. Plant Nutr., 30(6), 981–994.
Flowers, T.J. (2004). Improving crop salt tolerance. J. Exp. B., 55(396), 307–319.
Gezgin, S., Dursun, N., Hamurcu, M., Harmankaya, M., Önder, M., Sade, B., Topal, A., Soylu, S., Akgün, N., Yorgancılar, M., Ceyhan, E., Çiftçi, N., Acar, B., Gültekin, I., Isık, Y., Seker, C., Babaoglu, M., 2002. Boron content of cultivated soils in Central-Southern Anatolia and its relationship with soil properties and irrigation water quality. Boron Plant Anim. Nutr., 1, 391–400.
Kabata-Pendias, A. (2001). Trace elements in soils and plants. 3rd ed. CRC Press, Tylor & Francis Group, Boca Raton–London–New York.
Karabal, E., Yücel, M., Öktem, H.A. (2003). Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci., 164(6), 925–933.
Koohkan, H., Maftoun, M., Emam, Y. (2008). Nitrogen and boron interactional effect on growth and shoot nitrogen and boron content in rice. J. Sci. Technol. Agric.
Nat. Res., 12(44), 171–182.
Korzeniowska, J., 2008. Response of ten winter wheat cultivars to boron foliar application in a temperate climate (South-West Poland). Agron. Res., 6, 471–476.
Lopez-Lefebre, L.R., Rivero, R.M., Garcia, P.C., Sanchez, E., Ruiz, J.M., Romero, L. (2002). Boron effect on mineral nutrients of tobacco. J. Plant Nutr., 25(3), 509–522.
Maxfield, R., Mindak, B. (1985). EPA (Environmental Protection Agency) Method Study 27. Method 200.7 – trace metals by ICP (inductively coupled plasma). U.S.
Environmental Protection Agency, Washington, D.C., EPA-600/S4-85/05 (NTIS PB85248656).
Metwally, A., El-Shazoly, R., Hamada, A.M. (2012). Effect of boron on growth criteria of some wheat cultivars. Biol. Earth Sci., 2, B1–B9.
Muhling, K.H., Wimmer, M., Goldbach, H.E., 1998. Apoplastic and membrane associated Ca2+ in leaves and roots as affected by boron deficiency. Physiol. Plant,
102, 179–184.
Nable, R.O., Bañuelos, G.S., Paull, J.G. (1997). Boron toxicity. Plant Soil, 193, 181–198.
Page, A., Miller, R., Keeney, D. (1982). Methods of soil analysis. American Society of Agronomy, Madison, WI.
Paull, J.G., Cartwright, B., Rathjen, A.J. (1988). Responses of wheat and barley genotypes to toxic concentration of soil boron. Euphytica, 39, 137–144.
Paull, J.G., Rathjen, A.J., Cartwright, B., Nable, R.O. (1990). Selection parameters for assessing the tolerance of wheat to high concentration of boron. In: Genetic
aspects of plant mineral nutrition, El Bassam, N., Dambroth, M., Loughman, B.C. (eds), Kluwer Academic Press, Dordrecht, pp. 361–369.
Reid, R., Fitzpatrick, K. (2009). Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat. Plant Physiol., 151, 413–420.
Ruiz, J.M., Rivero, R.M., Romero, L. (2003). Preliminary studies on the involvement of biosynthesis of cysteine and glutathione concentration in the resistance to B toxicity in sunflower plants. Plant Sci., 165(4), 811–817.
Tanaka, M., Fujiwara, T. (2008). Physiological roles and transport mechanism of boron: perspectives from plants. Eur. J. Physiol., 456(4), 671–677.
Tariq, M., Khattak, J.K., Sarwar, G. (1993). Effect of boron on the yield and quality of sugar beet in Peshawar Valley. Sci. Khyber., 6, 97–106.
Tariq, M., Mott, C.J.B. (2006). Effect of applied boron on the accumulation of cations and their ratios to boron in radish (Raphaus sativus L.). Soil Environ., 25(1), 40–47.
Tariq, M., Akbar, A., Lataf-ul-Haq, Khan, A. (2010). Comparing application methods for boron fertilizer on the yield and quality of tobacco (Nicotiana tabacum L.).
Commun. Soil Sci. Plant Anal., 41(13), 1525–1537.
Downloads
Download data is not yet available.