Skip to main navigation menu Skip to main content Skip to site footer

Vol. 23 No. 4 (2024)

Articles

In vitro studies of the antagonistic effect of selected fungi on Bipolaris sorokiniana (Sacc.) Shoem.

DOI: https://doi.org/10.24326/asphc.2024.5382
Submitted: May 13, 2024
Published: 2024-09-06

Abstract

Natural protection of plants against diseases, pests and environmental stresses is the only acceptable alternative to the progressive application of chemicals in plant production. Amidst evolving climatic patterns, various diseases pose significant threats to crop plant production. Among these concerns, a prominent menace across multiple regions of the world is seedling blight, incited by the pathogenic agent Bipolaris sorokiniana Sacc. The antagonistic effect may occur in/on the host itself or in its vicinity in the case of saprotrophic organisms. B. sorokiniana attacks many species of crop plants, especially in warmer growing areas and causes significant losses of field emergence and yield. This study aimed to assess the inhibitory impact of selected microscopic fungi on the growth and development of B. sorokiniana through dual-culture experiments. The study also aimed to identify potential fungal candidates for the biocontrol of seedling blight caused by this pathogen. The outcomes demonstrated that only several of the fungi subjected to testing had a noteworthy influence on the growth of B. sorokiniana. The presence of a few fungi species, such as Trichoderma viride, Fusarium graminearum, and Botrytis cinerea led to a decrease in B. sorokiniana growth by a minimum of 50%. In the instance of other fungi such as Sordaria fimicola, Epicoccum nigrum, Fusarium sporotrichioides, F. culmorum, and Nigrospora oryzae, the reduction amounted to at least 40%. The vast majority (75%) of the fungal species used in the test limited the growth of Bipolaris colonies by up to 39%.

References

  1. Abbas, A., Jiang, D., Fu, Y. (2017). Trichoderma spp. as antagonist of Rhizoctonia solani. J. Plant Pathol. Microbi-ol., 8, 402. https://doi.org/10.4172/2157-7471.1000402 DOI: https://doi.org/10.4172/2157-7471.1000402
  2. Alizadeh, M., Vasebi, Y., Safaie, N. (2020). Microbial antagonists against plant pathogens in Iran: a review. Open Agric., 5, 404–440. DOI: https://doi.org/10.1515/opag-2020-0031
  3. Alippi, A.M., Perelló, A.E., Sisterna, M.N., Greco, N.M., Cordo, C.A. (2000). Potential of Spore-forming bacteria as biocontrol agents of wheat foliar diseases under laboratory and greenhouse conditions. J. Plant Dis. Prot., 107(2), 155–169.
  4. Al-Sadi, A.M. (2021). Bipolaris sorokiniana – induced black point, common root rot, and spot blotch diseases of wheat: a Review. Front. Cell. Infect. Microbiol., 11, 584899. https://doi.org/10.3389/fcimb.2021.584899 DOI: https://doi.org/10.3389/fcimb.2021.584899
  5. Baker, K.F. (1987). Evolving concepts of biological control of plant pathogens. Annu. Rev. Phytopathol., 25(1), 67–85. https://doi.org/10.1146/annurev.py.25.090187.000435 DOI: https://doi.org/10.1146/annurev.py.25.090187.000435
  6. Barba, J.T., Reis, E.M., Forcelini, C.A. (2002). Comparison of methods for the detection of Bipolaris sorokiniana in barley seeds. Fitopatol. Bras., 27(4), 389–394. DOI: https://doi.org/10.1590/S0100-41582002000400009
  7. Calvo, J., Calvente, V., de Orellano,M.E., Benuzzi, D., de Tosetti, M.I.S. (2003). Improvement in the biocontrol of postharvest diseases of apples with the use of yeast mixtures. Biocontrol, 48(5), 579–593. https://doi.org/10.1023/A:1025738811204 DOI: https://doi.org/10.1023/A:1025738811204
  8. Chidambaram, S.B., Matur, S.B., Neergaard, P. (1972). Handbook on seed health testing. The Internat. Seed Test-ing Association As-NLH, Norway, 1–207.
  9. Christensen, J.J. (1922). Studies on the parasitism of Helminthosporium sativum. Univ. Minn. Agric. Exp. Stn. Tech. Bull., 11, 1–42.
  10. Christensen, J.J. (1963). Longevity of fungi in barley kernels. Pl. Dis. Reprt., 47, 639–642.
  11. Clark, R.V., Wallen, V.R. (1969). Seed infection of barley by Cochliobolus sativus and its influence on yield. Can. Plant Dis. Surv., 49, 60–64.
  12. Couture, L., Sutton, J.C. (1978) Relation of weather variables and host factors to incidence of airborne spores of Bipolaris sorokiniana. Can. J. Bot., 56, 2162–2170. DOI: https://doi.org/10.1139/b78-258
  13. Darshan, K., Agrawal, R., Bashal, M.B., Mohan, M.H. (2020). Deciphering the network of interconnected pathways of Chaetomium globosum antagonistic related genes against Bipolaris sorokiniana using RNA seq approach. J. Biol. Control, 34(4), 258–269. https://doi.org/10.18311/jbc/2020/26736 DOI: https://doi.org/10.18311/jbc/2020/26736
  14. Dutbayev, Y., Kharipzhanova, A., Sultanova, N., Dababat, A.A., Bekezhanova, M., Uspanov, A. (2022). The ability of Bipolaris sorokiniana isolated from spring barley leaves to survive in plant residuals of different crops. OnLine J. Biol. Sci., 22(3), 279–286. https://doi.org/10.3844/ojbsci.2022.279.286 DOI: https://doi.org/10.3844/ojbsci.2022.279.286
  15. Freeman, S., Minz, D., Kolesnik, I., Barbul, O., Zveibil, A., Maymon, M., et al. (2004). Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. Eur. J. Plant Pathol., 110(4), 361–370. https://doi.org/10.1023/B:EJPP.0000021057.93305.d9 DOI: https://doi.org/10.1023/B:EJPP.0000021057.93305.d9
  16. Ghazvini, H., Tekauz, A. (2012). Molecular diversity in the barley pathogen Bipolaris sorokiniana (Cochliobolus sativus). Australas. Plant Pathol., 41, 283–293. DOI: https://doi.org/10.1007/s13313-012-0131-9
  17. Guetsky, R., Shtienberg, D., Elad, Y., Dinoor, A. (2001). Combining biocontrol agents to reduce the variability of biological control. Phytopathology, 91, 621–627. https://doi.org/10.1094/PHYTO.2001.91.7.621 DOI: https://doi.org/10.1094/PHYTO.2001.91.7.621
  18. Haggag, W.M., Nofal, M.A. (2006). Improving the biological control of Botryodiplodia disease on some Annona cultivars using single or multibioagents in Egypt. Biol. Control, 38(3), 341–349. https://doi.org/10.1016/j.biocontrol.2006.02.010 DOI: https://doi.org/10.1016/j.biocontrol.2006.02.010
  19. Heydari, A., Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antago-nists. J. Biol. Sci., 10(4), 273–290. https://doi.org/10.3923/jbs.2010.273.290 DOI: https://doi.org/10.3923/jbs.2010.273.290
  20. Howell, C.R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis., 87(1), 4–10. https://doi.org/10.1094/PDIS.2003.87.1.4 DOI: https://doi.org/10.1094/PDIS.2003.87.1.4
  21. Iftikhar, S., Shahzad, A., Munir, A., Sultan, A., Iftikhar, A. (2009). Hosts of Bipolaris sorokiniana, the major path-ogen of spot blotch of wheat in Pakistan. Pak. J. Bot., 41, 1433–1436.
  22. Infante, D., Martínez, B., Gonzalez, N., Reyes, Y. (2009). Mecanismos de acción de Trichoderma frente a hongos fitopatógenos. Rev. Protección Veg., 24, 14–21.
  23. Knudsen, I.M.B., Hockenhull, J., Jensen, D.F. (1995). Biocontrol of seedling diseases of barley and wheat caused by Fusarium culmorum and Bipolaris sorokiniana: effects of selected fungal antagonists on growth and yield components. Plant Pathol., 44(3), 467–477. DOI: https://doi.org/10.1111/j.1365-3059.1995.tb01669.x
  24. Kumar, J., Hückelhoven, R., Beckhove, U., Nagarajan, S., Kogel, K.H. (2001). A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) and its toxins. Am. Phytopathol. Soc., 91(2), 127–133. https://doi.org/10.1094/PHYTO.2001.91.2.127 DOI: https://doi.org/10.1094/PHYTO.2001.91.2.127
  25. Kumar, J., Schafer, P., Hückelhoven, R., Langen, G., Baltruschat, H., Stein, E., Nagarajan, S., Kogel, K.H. (2002). Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards bet-ter control double dagger. Mol. Plant Pathol., 3(4), 185–195. DOI: https://doi.org/10.1046/j.1364-3703.2002.00120.x
  26. Kwaśna, H., Chełkowski, J., Zajkowski, P. (1991). Flora Polska. T. 22. Grzyby niedoskonałe. Strzępczakowe. Gru-zełkowate. Sierpik (Fusarium). PAN, Warszawa-Kraków, 1–158.
  27. Malaker P.K., Mian, I.H., Maniruzzaman Khandaker, M.D., Reza, M.M.A. (2007). Survival of Bipolaris sorokin-iana (Sacc.) Shoemaker in soil and residue of wheat. Bangladesh J. Bot., 36(2), 133–137. DOI: https://doi.org/10.3329/bjb.v36i2.1501
  28. Liu, B., Stevens-Green, R., Johal, D., Buchanan, R., Geddes-McAlister, J. (2022). Fungal pathogens of cereal crops: Proteomic insights into fungal pathogenesis, host defense, and resistance. J. Plant Physiol., 269, 153593. https://doi.org/10.1016/j.jplph.2021.153593 DOI: https://doi.org/10.1016/j.jplph.2021.153593
  29. Luan, P., Yi, Y., Huang, Y., Cui, L., Hou, Z., Zhu, L., Ren, X., Jia, S., Liu, Y. (2023). Biocontrol potential and action mechanism of Bacillus amyloliquefaciens DB2 on Bipolaris sorokiniana. Front. Microbiol. 14, 1149363. https://doi.org/10.3389/fmicb.2023.1149363 DOI: https://doi.org/10.3389/fmicb.2023.1149363
  30. Malone, J.P., Muskett, A.E. (1997). Seed-borne fungi. Description of 77 fungus species, Sheppard J.W. (ed.). ISTA, Zurich, 1–191.
  31. Modrzewska, M., Błaszczyk, L., Stępień, Ł. Urbaniak, M., Waśkiewicz, A., Yoshinari, T., Bryła, M. (2022). Tricho-derma versus Fusarium – inhibition of pathogen growth and mycotoxin biosynthesis. Molecules, 27, 8146. http://doi.org/10.3390/molecules27238146 DOI: https://doi.org/10.3390/molecules27238146
  32. Ordentlich, A., Nachmias, A., Chet, I. (1990). Integrated control of Verticillium dahlia in potato by Trichoderma harzianum and captan. Crop Prot., 9 (5), 363–366. http://doi.org/10.1016/0261-2194(90)90008-U DOI: https://doi.org/10.1016/0261-2194(90)90008-U
  33. Rao, A.P., Agbo, B.E., Ikpoh, I.S., Udoekong, N.S., Etuk, H.A. (2016). Biological control mechanisms against plant-based pathogens. J. Biopesticides and Environment, 3, 1–11. DOI: https://doi.org/10.9734/JAMB/2017/33320
  34. Salehpour, M., Etebarian, H.R., Roustaei, A., Khodakaramian, G., Aminian, H. (2005). Biological control of com-mon root rot of wheat ( Bipolaris sorokiniana ) by Trichoderma isolates. Plant Pathol. J., 4(1), 85–90. DOI: https://doi.org/10.3923/ppj.2005.85.90
  35. Sarkar, D., Rovenich, H., Jeena, G., Nizam, S., Tissier, A., Balcke, G.U., Mahdi, L.K., Bonkowski, M., Langen, G., Zuccaro, A. (2019). The inconspicuous gatekeeper: endophytic Serendipita vermifera acts as extended plant protection barrier in the rhizosphere. New Phytol., 224, 886–901. http://doi.org/10.1111/nph.15904 DOI: https://doi.org/10.1111/nph.15904
  36. Singh, D., Pande, S.K., Kavita, Kumar Yadav, J., Kumar, S. (2018). Bioefficacy of Trichoderma spp. against Bipo-laris sorokiniana causing spot blotch disease of wheat and barley. Int. J. Curr. Microbiol. App. Sci., 7(3), 2322–2327. https://doi.org/10.20546/ijcmas.2018.703.272 DOI: https://doi.org/10.20546/ijcmas.2018.703.272
  37. Singh, U.B., Malviya, D., Singh, S., Kumar, M., Sahu, P.K., Singh, H.V., Kumar, S., Roy, M., Imran, M., Rai, J.P., Sharma, A.K., Saxena, A.K. (2019). Trichoderma harzianum- and methyl jasmonate-induced resistance to Bi-polaris sorokiniana through enhanced phenylpropanoid activities in bread wheat (Triticum aestivum L.). Front. Microbiol., 10, 1697. http://doi.org/10.3389/fmicb.2019.01697 DOI: https://doi.org/10.3389/fmicb.2019.01697
  38. Sundar, A.R., Das, N.M., Krishnaveni, D. (1995). In-vitro antagonism of Trichoderma spp. against two fungal path-ogens of castor. Indian J. Plant Prot., 23, 152–155.
  39. Thambugala, K.M., Daranagama, D.A., Phillips, A.J.L., Kannangara, S.D., Promputtha, I. (2020). Fungi vs. fungi in biocontrol: an overview of fungal antagonists applied against fungal plant pathogens. Front. Cell. Infect. Micro-biol., 10, 604923. http://doi.org/10.3389/fcimb.2020.604923 DOI: https://doi.org/10.3389/fcimb.2020.604923
  40. Tucci, M., Ruocco, M., De Masi, L., De Palma, M., Lorito, M. (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol. Plant Pathol., 12, 341–354. DOI: https://doi.org/10.1111/j.1364-3703.2010.00674.x
  41. Tyśkiewicz, R., Nowak, A., Ozimek, E., Jaroszuk-Sciseł, J. (2022). Trichoderma: the current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int. J. Mol. Sci., 23, 2329. http://doi.org/10.3390/ijms23042329 DOI: https://doi.org/10.3390/ijms23042329
  42. Vaish, S.S., Ahmed, S.B., Prakash, K. (2011). First documentation on status of barley diseases from the high altitude cold arid trans-Himalayan Ladakh region of India. Crop Prot., 30, 1129–1137. http://doi.org/10.1016/j.cropro.2011.04.015 DOI: https://doi.org/10.1016/j.cropro.2011.04.015
  43. Vargas, W.A., Sanz Martín, J.M., Rech, G.E., Rivera, L.P., Benito, E.P., Díaz-Mínguez, J.M., Thon, M.R., Sukno, S.A. (2012). Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colle-totricum graminicola in maize. Plant Physiol., 158(3), 1342–1358. https://doi.org/10.1104/pp.111.190397 DOI: https://doi.org/10.1104/pp.111.190397
  44. Wang, Y., Ma, L., Liu, Z., Chen, J., Song, H., Wang, J., Cui, H., Yang, Z., Xiao, S., Liu, K., An, L., Chen, S. (2022). Microbial interactions play an important role in regulating the effect of plant species on soil bacterial diversity. Front. Microbiol., 13, 984200. https://doi.org/10.3389/fmicb.2022.984200 DOI: https://doi.org/10.3389/fmicb.2022.984200
  45. White, T.J., Bruns, T., Lee, S., Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (eds), PCR protocols: a guide to meth-ods and applications. Academic Press, New York, pp. 315–322. DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  46. Xu, X. M., Jeffries, P., Pautasso, M., Jeger, M.J. (2011). Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology, 101(9), 1024–1031. https://doi.org/10.1094/PHYTO-08-10-0216 DOI: https://doi.org/10.1094/PHYTO-08-10-0216
  47. Yi, Y., Shan, Y., Liu, S., Yang, Y., Liu, Y., Yin, Y., Hou, Z., Luan, P., Li, R. (2021). Antagonistic strain Bacillus amy-loliquefaciens XZ34-1 for controlling Bipolaris sorokiniana and promoting growth in wheat. Pathogens, 10, 1526. https://doi.org/10.3390/pathogens10111526 DOI: https://doi.org/10.3390/pathogens10111526
  48. Yue, H.M., Wang, M., Gong, W.F., Zhang, L.Q. (2018). The screening and identification of the biological control fungi Chaetomium spp. against wheat common root rot. FEMS Microbiol. Lett., 365. https://doi.org/10.1093/femsle/fny242 DOI: https://doi.org/10.1093/femsle/fny242
  49. Zhang, W., Li, H., Wang, L., Xie, S., Zhang, Y., Kang, R., Zhang, M., Zhang, P., Li, Y., Hu, Y., Wang, M., Chen, L., Yuan, H., Ding, S., Li, H. (2022). A novel effector, CsSp1, from Bipolaris sorokiniana, is essential for coloniza-tion in wheat and is also involved in triggering host immunity. Mol. Plant Pathol., 23, 218–236. DOI: https://doi.org/10.1111/mpp.13155

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.