Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 18 Nr 4 (2019)

Artykuły

Heavy metal accumulation in various tissues of radish (Raphanus sativus) grown under different ratios of organic amendments

DOI: https://doi.org/10.24326/asphc.2019.4.18
Przesłane: 23 lipca 2019
Opublikowane: 2019-07-23

Abstrakt

Root vegetables have greater risk of metal contamination from compost application to soil than other horticultural crops. Moreover, soil organic amendments pose potential environmental hazards. The objective of the present study was to examine the heavy metal uptake in different tissues (petiole, blade, skin, pulp) of Raphanus sativus exposed to organic amendments doses. The impact of the above materials on heavy metal concentration of the soil and plant development parameters were also evaluated. A pot experiment was established with eight treatments arranged in a randomized complete block design and four replicates. Co-compost of sewage sludge and olive wastes at 100, 200, 300 m3 ha–1, composted olive leaves, olive tree pruning wastes, olive mill pomace and poultry manure at 100, 200 m3 ha–1, commercial liquid organic fertilizer at 50 Kg ha–1 with or without inorganic NPK fertilization and a no fertilizing control, were applied to plants. The results showed that sewage sludge application strongly increased the yield and improved radish size cultivated in silt loam soil. The edible radish part had the lowest Fe, Mn, Cu, Zn, and Cr content, whereas the highest Mn, Cu, Zn, Cr was found in the blade and increased Fe, Ni, Pb were recorded in the skin. Organic treatments gave higher Fe, Mn, Cu, Zn amount in both aerial plant tissues compared to the control soil, while Ni, Pb, Cr of all the radish parts were not affected by treatments. This study suggested that organic amendments application gave low permissible levels of all metal content in radish tissues and increased radish productivity. Therefore, organic materials used herein can be applied for normal plant growth without metal contamination of the plant and the soil.

Bibliografia

  1. Alloway, B.J. (2013). Sources of heavy metals and metalloids in soils. In: Heavy Metals in Soils, Alloway, B.J. (eds.). Springer, Dordrecht, Netherlands, 11–50.
  2. Antonious, G.F., Kochhar, T.S., Coolong, T. (2012). Yield, quality, and concentration of seven heavy metals in cabbage and broccoli grown in sewage sludge and chicken manure amended soil. J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 47, 1955–1965. DOI: 10.1080/03601234.2012.676509
  3. Belhaj, D., Elloumi, N., Jerbi, B., Zouari, M., Abdallah, F.B., Ayadi, H., Kallel, M. (2016). Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus). Environ. Sci. Pollut. Res., 23, 20168–20177. DOI: 10.1007/s11356-016-7193-0
  4. Bhat, M.A., Kirmani, N.A., Agrawal, H.P., Bhat, M.I., Wani, A. (2011). Heavy metal phytotoxicity to radish (Raphanus sativus L.) in a digested sludge amended gangetic alluvium. Soil Sediment Contam., 20, 733–743. DOI: 10.1080/15320383.2011.594113
  5. D’Mello, J.P.F. (2003). Food Safety: Contaminants and Toxins. CABI Publishing, Cambridge.
  6. Eid, E.M., Shaltout, K.H. (2016). Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dumpsite. Int. J. Phytorem., 18, 1075–1085. DOI: 10.1080/15226514.2016.1183578
  7. Fytianos, K., Katsianis, G., Triantafyllou, P., Zachariadis, G. (2001). Accumulation of heavy metals in vegetables grown in an industrial area in relation to soil. Bull. Environ. Contam. Toxicol., 67, 423–430. DOI: 10.1007/s00128-001-0141-8
  8. Golui, D., Datta, S.P., Rattan, R.K., Dwivedi, B.S., Meena, M.C. (2014). Predicting bioavailability of metals from sludge-amended soils. Environ. Monit. Assess., 186(12), 8541–8553. DOI: 10.1007/s10661-014-4023-z
  9. Grotto, D., Batista, B.L., Souza, J.O., Carneiro, M.F.H., Santos, D., dos, Melo, W.J., Barbosa, F., Jr. (2015). Essential and nonessential element translocation in corn cultivated under sewage sludge application and associated health risk. Water, Air Soil Pollut., 226, 261. DOI: 10.1007/s11270-015-2527-y
  10. Gu, C., Bai, Y., Tao, T., Chen, G., Shan, Y. (2012). Effect of sewage sludge amendment on heavy metal uptake and yield of ryegrass seedling in a Mudflat soil. J. Environ. Qual., 42, 421–428. DOI: 10.2134/jeq2012.0311
  11. Haghighi, M., Barzegar, M.R., Teixeira da Silva, J.A. (2016). The effect of municipal solid waste compost, peat, perlite and vermicompost on tomato (Lycopersicum esculentum L.) growth and yield in a hydroponic system. Int. J. Recycl. Org. Waste Agric., 5, 231–242. DOI: 10.1007/s40093-016-0133-7
  12. Ilker, S., Kalkan, H., Demir, H., Külcü, R., Yaldiz, O., Kaplan, M. (2017). Mineral composition and quality parameters of greenhouse-grown lettuce (Lactuca sativa L.) depending on fertilization with agricultural waste composts. Acta Sci. Pol. Hortorum Cultus, 16(3), 85–95. DOI: 10.24326/asphc.2017.3.9
  13. Jones, J.B., Wolf, B., Mills, A.H. (1991). Plant analysis handbook. Micro-Macro Publishing Inc., Athens, Georgia, USA.
  14. Kabata-Pendias, A. (2011). Trace elements in soils and plants. CRC Press, Boca Raton.
  15. Kim, K.H., Moon, E., Kim, S.Y., Choi, S.U., Lee, J.H., Lee, K.R. (2014). 4-Methylthio-butanyl derivatives from the seeds of Raphanus sativus and their biological evaluation on anti-inflammatory and antitumor activities. J. Ethnopharmacol., 151, 503–508. DOI: 10.1016/j.jep.2013.11.003
  16. Marchiol, L., Assolari, S., Sacco, P., Zerbi, G. (2004). Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ. Pollut., 132(1), 21–27. DOI: 10.1016/j.envpol.2004.04.001
  17. McGrath, S.P., Zhao, F.J., Dunhum, S.J., Crosland, A.R., Coleman, K. (2000). Long term changes in the extractability and bioavailability of zinc and cadmium after sludge application. J. Environ. Qual., 29(3), 875–883. DOI: 10.2134/jeq2000.00472425002900030025x
  18. Ministry of the Environment, Finland (2007). Government Decree on the Assessment of Soil Contamination and Remediation Needs. Available: http://www.finlex.fi/en/laki/kaannokset/2007/en20070214.pdf [date of access: 22.03.2018].
  19. Mishra, A., Tripathi, B.D. (2008). Heavy metal contamination of soil, and bioaccumulation in vegetables irrigated with treated waste water in the tropical city of Varanasi, India. Toxicol. Environ. Chem., 90(5), 861–871. DOI: 10.1080/02772240701740197
  20. Naiji, M., Souri, M.K. (2018). Nutritional value and mineral concentrations of sweet basil under organic compared to chemical fertilization. Acta Sci. Pol. Hortorum Cultus, 17(2), 167–175. DOI: 10.24326/asphc.2018.2.14
  21. Ouzounidou, G., Ciamporova, M., Moustakas, M., Karataglis, S. (1995). Responses of maize (Zea mays L.) plants to copper stress – I. Growth, mineral content and ultra-structure of roots. Environ. Exp. Bot., 35, 167–176. DOI: 10.1016/0098-8472(94)00049-B
  22. Page, A.L., Miller, R.H., Keeney, D.R. (1982). Chemical and microbiological properties. In: Methods of Soil Analysis, American Society of Agronomy Inc and Soil Science Society of America Inc (eds.). Madison, Wisconsin, 1159.
  23. Punz, W.F., Sieghardt, H. (1993). The response of roots of herbaceous plant species to heavy metals. Environ. Exp. Bot., 33(1), 85–98. DOI: 10.1016/0098-8472(93)90058-N
  24. Rathod, P.H., Patel, J.C., Jhala, A.J. (2011). Potential of gamma irradiated sewage sludge as fertilizer in radish: Evaluating heavy metal accumulation in sandy loam soil. Commun. Soil Sci. Plant Anal., 42, 263–282. DOI: 10.1080/00103624.2011.538880
  25. Rossini-Oliva, S., Mingorance, M.D., Pena, A. (2017). Effect of two different composts on soil quality and on the growth of various plant species in a polymetallic acidic mine soil. Chemosphere, 168, 183–190. DOI: 10.1016/j.chemosphere.2016.10.040
  26. Samaras, V., Tsadilas, D.C., Stamatiadis, S. (2008). Effects of repeated application of municipal sewage sludge on soil fertility, cotton yield, and nitrate leaching. Agron. J., 100(3), 477-483. DOI: 10.2134/agronj2007.0162
  27. Singh, J., Kumar, A. (2014). Mobility of heavy metals in sewage sludge applied soil and its uptake by radish (Raphanus Sativus L.). Int. J. Agric. Stat. Sci., 10, 521–526
  28. Tamoutsidis, E., Papadapoulos, I., Tokatlidis, I., Zotis, S., Mavropoulos, T. (2002). Wet sewage sludge application effect on soil properties and element content of leaf and root vegetables. J. Plant Nutr., 25, 1941–1955.
  29. Tóth, G., Hermann, T., Da Silva, M.R., Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int., 88, 299–309. DOI: 10.1016/j.envint.2015.12.017
  30. Turkmen, O., Sensoy, S., Dursun, A., Turan, M. (2004). Sewage sludge as a substitute for mineral fertilization of spinach (Spinacia oleraceae L.) at two growing periods. Acta Agric. Scand., Sect. B, 54(2), 102–107. DOI: 10.1080/09064710410030221
  31. Waqas, M., Khan, S., Qing, H., Reid, B.J., Chao, C. (2014). The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation in Cucumis sativa L. Chemosphere, 105, 53–61. DOI: 10.1016/j.chemosphere.2013.11.064
  32. Witter, E. (1996). Towards zero accumulation of heavy metals in soils. Fert. Res., 43, 225–233. DOI: 10.1007/BF00747706
  33. Zhao, X.L., Mu, Z.J., Cao, C.M., Wang, D.Y. (2012). Growth and heavy metal uptake by lettuce grown in soils applied with sewage sludge compost. Commun. Soil Sci. Plant Anal., 43, 1532–1541. DOI: 10.1080/00103624.2012.675390

Downloads

Download data is not yet available.

Podobne artykuły

<< < 15 16 17 18 19 20 21 22 23 24 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.