Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Reakcja jęczmienia jarego na systemy uprawy roli i resztki pożniwne

Andrzej Woźniak

Katedra Herbologii i Technik Uprawy Roślin, Uniwersytet Przyrodniczy w Lublinie, ul. Akademicka 13, 20-950 Lublin
https://orcid.org/0000-0002-9845-7003

Leszek Rachoń

Department of Plant Production Technology and Commodities Science University of Life Sciences in Lublin, Poland
https://orcid.org/0000-0002-4126-4008


Abstrakt

The present study aimed to assess the effect of tillage systems and crop residues on grain yield and weed infestation of spring barley. The experiment was established with the method of randomized sub-blocks. The main experimental factor was the tillage system (TS): conventional tillage (CT), reduced tillage (RT), and no-tillage (NT). The second experimental factor included plots with crop residues (CR): straw (S) or without straw (WS). A higher grain yield of barley was determined in the RT than NT system. The RT system allowed producing a higher spike number and a higher 1000 grain weight. A higher grain yield was also obtained on the plots with straw (S) than without straw (WS). Greater weed density in barley stands was determined on RT and NT plots without crop residues (WS), whereas the lowest one was found on the CT plots with the residues (S). The air-dry weight of weeds was higher on the NT plots without crop residues (WS) than on the other plots, while the lowest air-dry weight of weeds was determined on the CT plots with the residues (S). The biodiversity of weeds in a barley stand was greater on the WS than on the S plots.

Słowa kluczowe:

tillage system, crop residues, grain yield, weed infestation, Shannon-Wiener's diversity index

Adeux G., Vieren E., Carlesi S., Bàrberi P., Munier-Jolain N., Cordeau S., 2019. Mitigating crop yield losses through weed diversity. Nat. Sustain. 2, 1018–1026. http://dx.doi.org/10.1038/s41893-019-0415-y DOI: https://doi.org/10.1038/s41893-019-0415-y

Aziz I., Mahmood T., Islam K.R., 2013. Effect of long term no-till and conventional tillage practices on soil quality. Soil Till. Res. 131, 28–35. http://dx.doi.org/10.1016/j.still.2013.03.002 DOI: https://doi.org/10.1016/j.still.2013.03.002

Celik I., Barut Z.B., Ortas I., Gok M., Demirbas A., Tulun Y., Akpinar C., 2011. Impacts of differ-ent tillage practices on some soil microbiological properties and crop yield under semi-arid Mediterranean conditions. Int. J. Plant Prod. 5, 237–254.

Cherr C.M., Scholberg J.M.S., McSorley R., 2006. Green manure approaches to crop production: a synthesis. Agron. J. 98, 302–319. http://dx.doi.org/10.2134/agronj2005.0035 DOI: https://doi.org/10.2134/agronj2005.0035

Cline G.R., Silvernail A.F., 2001. Residual nitrogen and kill date effects on winter cover crop growth and nitrogen content in a vegetable production system. Hort. Technol. 11, 219–225. http://dx.doi.org/10.21273/HORTTECH.11.2.219 DOI: https://doi.org/10.21273/HORTTECH.11.2.219

Döring T.F., Brandt M., Heß J., Maria R., Finckh M.R., Saucke H., 2005. Effects of straw mulch on soil nitrate dynamics, weeds, yield and soil erosion in organically grown potatoes. Field Crops Res. 94, 238–249. http://dx.doi.org/10.1016/j.fcr.2005.01.006 DOI: https://doi.org/10.1016/j.fcr.2005.01.006

De Vita P., Di Paolo E., Fecondo G., Di Fonzo N., Pisante M., 2007. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Till. Res. 92, 69–78. DOI: https://doi.org/10.1016/j.still.2006.01.012

Derpsch R., Friedrich T., Kassam A., Hongwen L., 2010. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 3, 1–25.

Dębska B., Jaskulska I., Jaskulski D., 2020. Method of tillage with the factor determining the quality of organic matter. Agronomy. 10, 1250. http://dx.doi.org/10.3390/agronomy10091250 DOI: https://doi.org/10.3390/agronomy10091250

Farooq M., Flower K.C., Jabran K., Wahid A., Siddique K.H.M., 2011. Crop yield and weed man-agement in rainfed conservation agriculture. Soil Till. Res. 117, 172–183. http://dx.doi.org/10.1016/j.still.2011.10.001 DOI: https://doi.org/10.1016/j.still.2011.10.001

Głąb T., Kulig B., 2008. Effect of mulch and tillage system on soil porosity under wheat (Triticum aestivum). Soil Till. Res. 99, 169–178. http://dx.doi.org/10.1016/j.still.2008.02.004 DOI: https://doi.org/10.1016/j.still.2008.02.004

Gruber S., Claupein W., 2009. Effect of tillage intensity on weed infestation in organic farming. Soil Till. Res. 105, 104–111. http://dx.doi.org/10.1016/j.still.2009.06.001 DOI: https://doi.org/10.1016/j.still.2009.06.001

Gruber S., Pekrun C., Möhring J., Claupein W., 2012. Long-term yield and weed response to conservation and stubble tillage in SW Germany. Soil Till. Res. 121, 49–56. http://dx.doi.org/10.1016/j.still.2012.01.015 DOI: https://doi.org/10.1016/j.still.2012.01.015

Haliniarz M., Nowak A., Woźniak A., Sekutowski T.R., Kwiatkowski C.A., 2018. Production and economic effects of environmentally friendly spring wheat production technology. Pol. J. Envi-ron. Stud. 27, 1523–1532. http://dx.doi.org/10.15244/pjoes/77073 DOI: https://doi.org/10.15244/pjoes/77073

Hernández Plaza E., Navarrete L., González-Andújar J.L., 2015. Intensity of soil disturbance shapes response trait diversity of weed communities: The long-term effects of different tillage systems. Agric. Ecosyst. Environ. 207, 101–108. http://dx.doi.org/10.1016/j.agee.2015.03.031 DOI: https://doi.org/10.1016/j.agee.2015.03.031

Schad P., Van Huyssteen C., Micheli E. (eds), 2015. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. FAO, Rome.

Jaskulska I., Gałęzewski L., Piekarczyk M., Jaskulski D., 2018. Strip-till technology – a method for uniformity in the emergence and plant growth of winter rapeseed (Brassica napus L.) in differ-ent environmental conditions of Northern Poland. Ital. J. Agron. 13, 194–199. http://dx.doi.org/10.4081/ija.2018.981 DOI: https://doi.org/10.4081/ija.2018.981

Jug I., Jug D., Sabo M., Stipešević B., Stošić M., 2011. Winter wheat yield and yield components as affected by soil tillage systems. Turk. J. Agric. For. 35, 1–7. DOI: https://doi.org/10.3906/tar-0909-376

Kobierski M., Jaskulska I., Jaskulski D., Dębska B., 2020. Effect of a tillage system on the chemical properties of sandy loam soils. J. Elem. 25, 1463–1473. http://dx.doi.org/10.5601/jelem.2020.25.3.1998 DOI: https://doi.org/10.5601/jelem.2020.25.3.1998

Koning L.A., de Mol F., Gerowitt B., 2019. Effects of management by glyphosate or tillage on the weed vegetation in a field experiment. Soil Till. Res. 186, 79–86. http://dx.doi.org/10.1016/j.still.2018.10.012 DOI: https://doi.org/10.1016/j.still.2018.10.012

Lal R., 1995. Tillage and mulching effects on maize yield for seventeen consecutive seasons on a tropical alfisol. J. Sustain. Agric. 5, 79–93. http://dx.doi.org/10.1300/J064v05n04_07 DOI: https://doi.org/10.1300/J064v05n04_07

Lal R., Reicosky D.C., Hanson J.D., 2007. Evolution of the plow over 10,000 years and the ra-tionale for no-till farming. Soil Till. Res. 93, 1–12. https://doi.org/10.1016/j.still.2006.11.004 DOI: https://doi.org/10.1016/j.still.2006.11.004

Li C., Moore-Kucera J., Lee J., Corbin A., Brodhagen M., Miles C., Inglis D., 2014. Effects of biodegradable mulch on soil quality. Appl. Soil Ecol. 79, 59–69. http://dx.doi.org/10.1016/j.apsoil.2014.02.012 DOI: https://doi.org/10.1016/j.apsoil.2014.02.012

López-Bellido L., López-Bellido R., Castillo J.E., López-Bellido F.J., 2001. Effects of long-term tillage, crop rotation and nitrogen fertilization on bread-making quality of hard red spring wheat. Field Crops Res. 72, 197–210. http://dx.doi.org/10.1016/S0378-4290(01)00177-0 DOI: https://doi.org/10.1016/S0378-4290(01)00177-0

Lu J.C., Watkins K.B., Teasdale J.R., Abdul-Baki A.A., 2000. Cover crops in sustainable food production. Food Rev. Inter. 16, 121–157. http://dx.doi.org/10.1081/FRI-100100285 DOI: https://doi.org/10.1081/FRI-100100285

Malhi S.S., Lemke R., Wang Z.H., Chhabra B.S., 2006. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Till. Res. 90, 171–183. http://dx.doi.org/10.1016/j.still.2005.09.001 DOI: https://doi.org/10.1016/j.still.2005.09.001

Maillard É., Angers D.A., Chantigny M., Lafond J., Pageau D., Rochette P., Lévesque G., Leclerc M.L., Parent L.É., 2016. Greater accumulation of soil organic carbon after liquid dairy manmanure application under cereal-forage rotation than cereal monoculture. Agr. Ecosyst. Environ. 233, 171–178. http://dx.doi.org/10.1016/j.agee.2016.09.011 DOI: https://doi.org/10.1016/j.agee.2016.09.011

Meier U. (ed.), 2001. Growth stages of mono- and dicotyledonous plants, 2nd ed. BBCH Mono-graph, Federal Biological Research Centre for Agriculture and Forestry, Bonn.

Morris N.L., Miller P.C.H., Orson J.H., Froud-Williams R.J., 2010. The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and environ-ment – a review. Soil Till. Res. 108, 1–15. http://dx.doi.org/10.1016/j.still.2010.03.004 DOI: https://doi.org/10.1016/j.still.2010.03.004

Pranagal J., Woźniak A., 2021. 30 years of wheat monoculture and reduced tillage and physical condition of Rendzic Phaeozem. Agric. Water Manag. 243, 106408. http://dx.doi.org/10.1016/j.agwat.2020.106408 DOI: https://doi.org/10.1016/j.agwat.2020.106408

Riemens M.M., van der Weide R.Y., Bleeker P.O., Lotz L.A.P., 2007. Effect of stale seedbed prepa-rations and subsequent weed control in lettuce (cv. Iceboll) on weed densities. Weed Res. 47, 149–156. http://dx.doi.org/10.1111/j.1365-3180.2007.00554.x DOI: https://doi.org/10.1111/j.1365-3180.2007.00554.x

Ruisi P., Giambalvo D., Saia S., Di Miceli G., Frenda A.S., Plaia A., Amato G., 2014. Conservation tillage in a semiarid Mediterranean environment: results of 20 years of research. Ital. J. Agron. 9, 560. http://dx.doi.org/10.4081/ija.2014.560 DOI: https://doi.org/10.4081/ija.2014.560

Santín-Montanyá M.I., Martín-Lammerding D., Zambranab E., Tenorio J.L., 2016. Management of weed emergence and weed seed bank in response to different tillage, cropping systems and se-lected soil properties. Soil Till. Res. 161, 38–46. http://dx.doi.org/10.1016/j.still.2016.03.007 DOI: https://doi.org/10.1016/j.still.2016.03.007

Storkey J., Neve P., 2018. What good is weed diversity? Weed Res. 58, 239–243. http://dx.doi.org/10.1111/wre.12310 DOI: https://doi.org/10.1111/wre.12310

Tabagio V., Gavazzi C., Menta C., 2008. The influence of no-till, conventional tillage and nitrogen fertilization on physico-chemical and biological indicators after three years of monoculture bar-ley. Ital. J. Agron. 3, 233–240. DOI: https://doi.org/10.4081/ija.2008.233

Tørresen K.S., Skuterud R., 2002. Plant protection in spring cereal production with reduced tillage. IV. Changes in the weed flora and weed seedbank. Crop Prot. 21, 179–193. DOI: https://doi.org/10.1016/S0261-2194(01)00081-3

Wang X., Fan J., Xing Y., Xu G., Wang H., Deng J., Wang Y., Zhang F., Li P., Li Z., 2019. Chap-ter three – the effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv. Agron. 153, 121–173. DOI: https://doi.org/10.1016/bs.agron.2018.08.003

Wicks G.A., Crutchfield D.A., Burnside O.C., 1994. Influence of wheat (Triticum aestivum) straw mulch and metolachlor on corn (Zea mays) growth and yield. Weed Sci. 42, 141–147. http://dx.doi.org/10.1017/S0043174500084307 DOI: https://doi.org/10.1017/S0043174500084307

Woźniak A., Kwiatkowski C., 2013. Effect of long-term reduced tillage on yield and weeds of spring barley. J. Agric. Sci. Technol. 15, 1335–1342.

Woźniak A., 2018. Effect of tillage system on the structure of weed infestation of winter wheat. Span. J. Agric. Res. 16, e1009. http://dx.doi.org/10.5424/sjar/2018164-12531 DOI: https://doi.org/10.5424/sjar/2018164-12531

Woźniak A., 2019. Effect of crop rotation and cereal monoculture on the yield and quality of winter wheat grain and on crop infestation with weeds and soil properties. Int. J. Plant Prod. 13, 177–182. http://dx.doi.org/10.1007/s42106-019-00044-w DOI: https://doi.org/10.1007/s42106-019-00044-w

Zikeli S., Gruber S., Teufel C.F., Hartung K., Claupein W., 2013. Effects of reduced tillage on crop yield, plant available nutrients and soil organic matter in a 12-year long-term trial under organic management. Sustainability. 5, 3876–3894. http://dx.doi.org/10.3390/su5093876 DOI: https://doi.org/10.3390/su5093876


Opublikowane
26-04-2022



Andrzej Woźniak 
Katedra Herbologii i Technik Uprawy Roślin, Uniwersytet Przyrodniczy w Lublinie, ul. Akademicka 13, 20-950 Lublin https://orcid.org/0000-0002-9845-7003
Leszek Rachoń 
Department of Plant Production Technology and Commodities Science University of Life Sciences in Lublin, Poland https://orcid.org/0000-0002-4126-4008



Licencja

Artykuły są udostępniane na zasadach CC BY 4.0 (do 2020 r. na zasadach CC BY-NC-ND 4.0)..
Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej i nie jest rozpatrywany do publikacji gdzie indziej.

Autor podpisuje oświadczenie o oryginalności dzieła, wkładzie poszczególnych osób i źródle finansowania.

 

Czasopismo Agronomy Science przyjęło politykę samoarchiwizacji nazwaną przez bazę Sherpa Romeo drogą niebieską. Od 2021 r. autorzy mogą samoarchiwizować postprinty artykułów oraz wersje wydawnicze (zgodnie z licencją CC BY). Artykuły z lat wcześniejszych (udostępniane na licencji CC BY-NC-ND 4.0) mogą być samoarchiwizowane tylko w wersji wydawniczej.

 


Inne teksty tego samego autora

1 2 3 4 > >>