Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Impact of cropping and tillage system on take-all disease of winter wheat (Gaeumannomyces graminis var. tritici)

Andrzej Woźniak

Department of Herbology and Plant Cultivation Techniques, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
https://orcid.org/0000-0002-9845-7003

Leszek Rachoń

Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
https://orcid.org/0000-0002-4126-4008

Myroslawa Soroka

Department of Botany, Wood Science and Non-timber Forest Resources, Ukrainian National Forestry University, 79057 Lviv, Ukraine
https://orcid.org/0000-0002-1037-6904


Abstrakt

Diseases induced by Gaeumannomyces graminis var. tritici (G. g. tritici) are the most important wheat root diseases in all cropping areas around the world and significantly reduces yield and quality of wheat grain. A multi-year field experiment was used to evaluate infestation of winter wheat roots by G. g. tritici. The experimental factors included: I. cropping system (CS): 1) crop rotation (CR): pea – winter wheat – spring barley; 2) monoculture of winter wheat (MON); and II. tillage system (TS): 1) CT – conventional tillage, 2) RT – reduced tillage, and 3) NT – no-tillage. The following cultivation treatment were applied: a shallow ploughing after previous harvest and pre-sowing ploughing in the CT system; double cultivation instead of both aforementioned ploughing treatments in the RT system; and glyphosate in NT system. A cultivation set, consisting of a cultivator, a string roller, and a harrow, was used before wheat sowing. The value of the index of winter wheat roots infestation by G. g. tritici was significantly higher in the monoculture than in crop rotation. The value was also higher in NT than in CT system. In wheat monoculture with NT system, the percentage of highly and severely infested plants was higher than in crop rotation with CT system.

Słowa kluczowe:

crop rotation, monoculture, tillage systems, index of root infestation

Andow D., 1983. The extent of monoculture and its effects on insect pest populations with particular reference to wheat and cotton. Agric. Ecosyst. Environ. 9(1), 25–35. https://doi.org/10.1016/0167-8809(83)90003-8 DOI: https://doi.org/10.1016/0167-8809(83)90003-8

Andrade O., Campillo R., Peyrelongue A., Barrientos L., 2011. Soils suppressive against Gaeumannomyces graminis var. tritici identified under wheat crop monoculture in southern Chile. Cienc. Investig. Agrar. 38(3), 345–356. https://dx.doi.org/10.4067/S0718-16202011000300004 DOI: https://doi.org/10.4067/S0718-16202011000300004

Augustin C., Jacob H.J., Werner A., 1997. Effects on growth of wheat plants of isolates of Gaeumannomyces/Phialophora – complex fungi in different conditions of soil moisture, temperature and photoperiod. Eur. J. Plant Pathol. 103, 417–426. https://doi.org/10.1023/A:1008621018486 DOI: https://doi.org/10.1023/A:1008621018486

Bailey D.J., Gilligan C.A., 1999. Dynamics of primary and secondary infection in take-all epidemics. Phytopathology 89(1), 84–91. https://doi.org/10.1094/PHYTO.1999.89.1.84 DOI: https://doi.org/10.1094/PHYTO.1999.89.1.84

Bailey D.J., Paveley N., Spink J., Lucas P., Gilligan C.A., 2009. Epidemiological analysis of take-all decline in winter wheat. Phytopathology 99, 861–868. https://doi.org/10.1094/PHYTO-99-7-0861 DOI: https://doi.org/10.1094/PHYTO-99-7-0861

Bithell S.L., Mckay A., Butler R.C., Ophel-Keller K., Ophel-Keller H., Hartley D., Cromey M.G., 2012. Predicting take-all severity in second-year wheat using soil DNA concentrations of Gaeumannomyces graminis var. tritici determined with qPCR. Plant Dis. 96(3), 443–451. https://doi.org/10.1094/PDIS-05-11-0445 DOI: https://doi.org/10.1094/PDIS-05-11-0445

Bithell S.L., Mclachlan A.R.G., Hide C.C.L., Mckay A., Cromey M.G., 2009. Changes of post-harvest levels of Gaeumannomyces graminis var. tritici inoculum in wheat fields. Australas. Plant Pathol. 38, 277–283. https://doi.org/10.1071/AP09003 DOI: https://doi.org/10.1071/AP09003

Ennaifar S., Makowski D., Meynard J.N., Lucas P., 2007. Evaluation of models to predict take-all incidence in winter wheat as a function of cropping practices, soil and climate. Eur. J. Plant Pathol. 118, 127–143. https://doi.org/10.1007/s10658-007-9119-7 DOI: https://doi.org/10.1007/s10658-007-9119-7

Freeman J., Ward E., 2004. Gaeumannomyces graminis, the take-all fungus and its relatives. Mol. Plant Pathol. 5(4), 235–252. https://doi.org/10.1111/j.1364-3703.2004.00226.x DOI: https://doi.org/10.1111/j.1364-3703.2004.00226.x

Gosme M., Willosquet L., Lucas P., 2007. Size, shape and intensity of aggregation of take-all disease during natural epidemics in second wheat crops. Plant Pathol. 56(1), 87–96. http://dx.doi.org/10.1111/j.1365-3059.2006.01503.x DOI: https://doi.org/10.1111/j.1365-3059.2006.01503.x

Gutteridge R.J., Hornby D., 2003. Effects of sowing data and volunteers on the infectivity of soil infested with Gaeumannomyces graminis var. tritici and on take-all disease in successive crops of winter wheat. Ann. Appl. Biol. 143(3), 272–282. https://doi.org/10.1111/j.1744-7348.2003.tb00295.x DOI: https://doi.org/10.1111/j.1744-7348.2003.tb00295.x

Gutteridge R.J., Jenkyn J.F., Bateman G.L., 2006. Effects of different cultivated or weed grasses, grown as pure stands or in combination with wheat, on take-all and its suppression in subsequent wheat crops. Plant Pathol. 55(5), 696–704. https://doi.org/10.1111/j.1365-3059.2006.01405.x DOI: https://doi.org/10.1111/j.1365-3059.2006.01405.x

Haliniarz M., Nowak A., Woźniak A., Sekutowski T.R., Kwiatkowski C.A., 2018. Production and economic effects of environmentally friendly spring wheat production technology. Pol. J. Environ. Stud. 27(4), 1523–1532. https://doi.org/10.15244/pjoes/77073 DOI: https://doi.org/10.15244/pjoes/77073

Janvier C., Villeneuvel F., Alabouvette C., Edel-Hermenn V., Mateille T., Steinberg C., 2007. Soil health through soil disease suppression: Which strategy from descriptors to indicators?. Soil Biol. Biochem. 39(1), 1–23. https://doi.org/10.1016/j.soilbio.2006.07.001 DOI: https://doi.org/10.1016/j.soilbio.2006.07.001

Jenkyn J.F., Gutteridge R.J., White R.P., 2014. Effects of break crops, and of wheat volunteers growing in break crops or in set-aside or conservation covers, all following crops of winter wheat, on the development of take-all (Gaeumannomyces graminis var. tritici) in succeeding crops of winter wheat. Ann. Appl. Biol. 165(3), 340–363. https://doi.org/10.1111/aab.12139 DOI: https://doi.org/10.1111/aab.12139

Koning L.A., de Mol F., Gerowitt B., 2019. Effects of management by glyphosate or tillage on the weed vegetation in a field experiment. Soil Till. Res. 186, 79–86. https://doi.org/10.1016/j.still.2018.10.012 DOI: https://doi.org/10.1016/j.still.2018.10.012

Kurowski T.P., Adamiak E., 2007. Occurrence of stem base diseases of four cereal species grown in long-term monocultures. Pol. J. Nat. Sci. 22(4), 574–583. http://dx.doi.org/10.2478/v10020-007-0050-3 DOI: https://doi.org/10.2478/v10020-007-0050-3

Lal R., 2009. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 60(2), 158–169. https://doi.org/10.1111/j.1365-2389.2008.01114.x DOI: https://doi.org/10.1111/j.1365-2389.2008.01114.x

Liu L., Kong J., Cui H., Zhang J., Wang F., Cai Z., Huang X., 2016. Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation. Biol. Control. 101, 103–113. http://dx.doi.org/10.1016/j.biocontrol.2016.06.011 DOI: https://doi.org/10.1016/j.biocontrol.2016.06.011

Meier U. (ed.), 2018. Growth stages of mono- and dicotyledonous plants: BBCH Monograph. Federal Biological Research Centre for Agriculture and Forestry. https://www.julius-kuehn.de/media/Veroeffentlichungen/bbch%20epaper%20en/page.pdf [date of access: 1.03.2023].

Rachoń L., Woźniak A., Kiełtyka-Dadasiewicz A., Szydłowska-Tutaj M., Lewko P., Makowski A., 2022. Występowanie chorób podsuszkowych na polach produkcyjnych pszenicy ozimej. Fragm. Agron. 39(1), 22–29. https://doi.org/10.26374/fa.2022.39.2

Ramanauskienė J., Dabkevičius Z., Tamošiūnas K., Petraitienė E., 2019. The incidence and severity of take-all in winter wheat and Gaeumannomyces graminis soil inoculum levels in Lithuania. Zemdirbyste. 106(1), 37–44. https://doi.org/10.13080/z-a.2019.106.005 DOI: https://doi.org/10.13080/z-a.2019.106.005

Ramanauskienė J., Semaškienė R., Jonavičienė A., Ronis A., 2018. The effect of crop rotation and fungicide seed treatment on take-all in winter cereals in Lithuania. Crop Prot. 110, 14–20. https://doi.org/10.1016/j.cropro.2018.03.011 DOI: https://doi.org/10.1016/j.cropro.2018.03.011

Sieling K., Stahl C., Winkelmann C., Christen O., 2005. Growth and yield of winter wheat in the first 3 years of a monoculture under varying N fertilization in NW Germany. Eur. J. Agron. 22(1), 71–84. https://doi.org/10.1016/j.eja.2003.12.004 DOI: https://doi.org/10.1016/j.eja.2003.12.004

Werker A.R., Gilligan C.A., 1990. Analysis of the effects of selected agronomic factors on the dynamics of the take-all disease of wheat in field plots. Plant Pathol. 39(1), 161–177. https://doi.org/10.1111/j.1365-3059.1990.tb02487.x DOI: https://doi.org/10.1111/j.1365-3059.1990.tb02487.x

Woźniak A., 2018. Effect of tillage system on the structure of weed infestation of winter wheat. Span. J. Agric. Res. 16(4), e1009. https://doi.org/10.5424/sjar/2018164-12531 DOI: https://doi.org/10.5424/sjar/2018164-12531

Woźniak A., 2019. Effect of crop rotation and cereal monoculture on the yield and quality of winter wheat grain and on crop infestation with weeds and soil properties. Int. J. Plant Prod. 13, 177–182. https://doi.org/10.1007/s42106-019-00044-w DOI: https://doi.org/10.1007/s42106-019-00044-w

Woźniak A., Gos M., 2014. Yield and quality of spring wheat and soil properties as affected by tillage system. Plant Soil Environ. 60(4), 141–145. https://doi.org/10.17221/7330-PSE DOI: https://doi.org/10.17221/7330-PSE

Woźniak A., Nowak A., Haliniarz M., Gawęda D., 2019. Yield and economic results of spring barley grown in crop rotation and in monoculture. Pol. J. Environ. Stud. 28(4), 2441–2448. https://doi.org/10.15244/pjoes/90634 DOI: https://doi.org/10.15244/pjoes/90634

Yang M., Mavrodi D.V., Thomashow L.S., Weller D.M., 2018. Differential response of wheat cultivars to Pseudomonas brassicacearum and take-all decline soil. Phytopathology 108(12), 1363–1372. https://doi.org/10.1094/PHYTO-01-18-0024-R DOI: https://doi.org/10.1094/PHYTO-01-18-0024-R


Opublikowane
22-01-2024



Andrzej Woźniak 
Department of Herbology and Plant Cultivation Techniques, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland https://orcid.org/0000-0002-9845-7003
Leszek Rachoń 
Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland https://orcid.org/0000-0002-4126-4008
Myroslawa Soroka 
Department of Botany, Wood Science and Non-timber Forest Resources, Ukrainian National Forestry University, 79057 Lviv, Ukraine https://orcid.org/0000-0002-1037-6904



Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.

Artykuły są udostępniane na zasadach CC BY 4.0 (do 2020 r. na zasadach CC BY-NC-ND 4.0)..
Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej i nie jest rozpatrywany do publikacji gdzie indziej.

Autor podpisuje oświadczenie o oryginalności dzieła, wkładzie poszczególnych osób i źródle finansowania.

 

Czasopismo Agronomy Science przyjęło politykę samoarchiwizacji nazwaną przez bazę Sherpa Romeo drogą niebieską. Od 2021 r. autorzy mogą samoarchiwizować postprinty artykułów oraz wersje wydawnicze (zgodnie z licencją CC BY). Artykuły z lat wcześniejszych (udostępniane na licencji CC BY-NC-ND 4.0) mogą być samoarchiwizowane tylko w wersji wydawniczej.

 


Inne teksty tego samego autora

1 2 3 4 > >>