Biochemical characterization of fennel (Ferula communis L.) different parts through their essential oils, fatty acids and phenolics

Fatma Zohra Rahali

Laboratory of Medicinal and Aromatic Plants, Biotechnology Center of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia

Myriam Lamine

Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia

Iness Bettaieb Rebey

Laboratory of Medicinal and Aromatic Plants, Biotechnology Center of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia

Wissem Aidi Wannes

Laboratory of Medicinal and Aromatic Plants, Biotechnology Center of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
http://orcid.org/0000-0003-3134-0457

Majdi Hammami

Laboratory of Medicinal and Aromatic Plants, Biotechnology Center of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia

Sawsen Selmi

Laboratory of Medicinal and Aromatic Plants, Biotechnology Center of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia

Ahmed Mliki

Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia

Ibtissem Hamrouni Sellami

Laboratory of Medicinal and Aromatic Plants, Biotechnology Center of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia


Abstract

The intention of this study was to compare the different parts of Tunisian Ferula communis via their fatty acids, essential oils and phenolic compounds. Results showed that the lipid fraction of fruits and leaves was characterized by the predominance of oleic acid. Erucic and linoleic acids were the most abundant in stems while linoleic and palmitic acids in flowers. F. communis essential oils were defined by four chemotypes, namely isoshyobunone/6-tert-butyl-4-methylcoumarin in stems; α-eudesmol/ caryophyllene oxide in leaves; caryophyllene/myrcene in flowers and α-gurjunene/hexadecanoic acid in fruits. So, oxygenated sesquiterpenes and sesquiterpene hydrocarbons represented the major classes of stem essential oil. Monoterpene hydrocarbons were the predominant classes of leaves and flowers. Fruit essential oil was predominated by sesquiterpene hydrocarbons. Resorcinol and ferulic acid were the main phenolic compounds in flowers but chlorogenic and ferulic acides in leaves. Stems were rich in ferulic acid and quercetin while leaves in coumarin and tannic acid. Besides to the high variability among F. communis parts, this plant contained high amounts of bioactive compounds with various health benefits attributed to their antioxidant potential.

Keywords:

Ferula communis, essential oil, fatty acids, polyphenols, endogenous variability

Adams, R.P. (2001). Identification of essential oil components by gas chromatography/ quadrupole mass spectroscopy. Allured: Carol Stream, IL.

Akaberi, M., Iranshahy, M., Iranshahi, M. (2015). Review of the traditional uses, phytochemistry, pharmacology and toxicology of giant fennel (Ferula communis L. subsp. communis). Iran J. Basic Med. Sci., 18, 1050–1062.

Akhgar, M.R., Moradalizadeh, M., Faghihi-Zarandi, A., Rajaei, P. (2011). Chemical composition of the essential oils of Ferula oopoda (Boiss. & Buhse) Boiss. and Ferula badghysi (Korovin.) from Iran. J. Essent. Oil-Bear Pl., 14, 297–301.

Baird, M.S., Preskett, D. (2013). Method of obtaining a solid component rich in a petroselinic compound. European patent: EP 2, 235, 150 B1.

Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M. (2008). Biological effects of essential oils a review. Food Chem. Toxicol., 46, 446–475.

Bligh, E.G., Deyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canad. J. Biochem. Physiol., 37, 911–917.

Bouratoua, A., Ferhat, M., Kabouche, A., Laggoune, S., Touzani, R., Kabouche, Z. (2014). Comparative compositions of essential oils of Ferula., 5, 1214–1217.

Caprioli, G., Fiorini, D., Maggi, F., Marangoni, M., Papa, F., Vittori, S., Sagratini, G. (2014). Ascorbic acid content, fatty acid composition and nutritional value of the neglected vegetable Alexanders (Smyrnium olusatrum L., Apiaceae). J. Food Comp. Anal., 35, 30–36.

Cecchi, E., Traverso, P.G. (1985). Biogas dalla frazione organica di rifiuti solidi urbani e fanghi di supero – Studio Preliminare [Biogas from the organic fraction of municipal solid waste and sewage sludge – Preliminary Study]. Chim. Ind., 67, 609–616.

Chibani, S., Berhail-Boudouda, H., Kabouche, A., Aburjai, T., Kabouche, Z. (2011). Analysis of the essential oil of Ferula communis L. from Constantine (Algeria). Int. J. Med. Arom. Pl., 1, 41–44.

Ferrari B., Tomi F., Casanova, J. (2005). Composition and chemical variability of Ferula communis essential oil from Corsica. Flav. Fragr. J., 20, 180–185.

Ghafoor, K., Doğu, S., Ahmed, I.A.M., Fadimu, G.J., Geçgel, Ü., Al Juhaimi, F., Babiker E.E., Özcan, M.M. (2019). Effect of some plant species on fatty acid composition and mineral contents of Ferulago, Prangos, Ferula, and Marrubium seed and oils. J. Food Process. Preserv., E13939.

Graf, B.A., Milbury, P.E., Blumberg, J.B. (2005). Flavonols, flavonones, flavanones and human health: Epidemological evidence. J. Med. Food, 8, 281–290.

Iranshahi, M. (2012). A review of volatile sulfur-containing compounds from terrestrial plants: biosynthesis, distribution and analytical methods. J. Essent. Oil Res., 24, 393–434.

Iranshahi, M., Iranshahi, M. (2011). Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assafoetida oleo-gum-resin) – a review. J. Ethnopharmacol., 134, 1–10.

Karakaya, S., Koca, M., Sytar, O., Duman, H. (2019). Determination of natural phenolic compounds of Ferula longipedunculata Peşmen and assessment their antioxidant and anticholinesterase potentials. Nat. Prod. Res., 29, 1–3.

Li, G., Wang, J., Li, X., Cao, L., Lv, N., Chen, G., Zhu, J., Si, J. (2015a). Two new sesquiterpene coumarins from the seeds of Ferula sinkiangensis. Phytochem. Lett., 13, 123–126.

Li, G.Z., Li, X.J., Cao, L., Zhang, L.J., Shen, L.G., Zhu, J., Wang, J.C., Si, J.Y. (2015b). Sesquiterpene coumarins from seeds of Ferula sinkiangensis. Fitoterapia, 103, 222–226.

Macheix, J.J., Fleuriet, A., Jay-Allemand, C. (2005). Les composés phénoliques des végétaux, un exemple de métabolites secondaires d’importance économique [Phenolic compounds in plants, an example of the economic importance of secondary metabolites]. Presses Polytechniques et Univesitaires Romandes. Lausanne, pp. 192.

Maggi, F., Cecchini, C., Cresci, A., Coman, M.M., Tirillini, B., Sagratini, G., Papa, F. (2009). Chemical composition and antimicrobial activity of the essential oil from Ferula glauca L. (F. communis L. subsp. glauca) growing in Marche (central Italy). Fitoteraphy, 80, 68–72.

Maggi, F., Papa, F., Dall’Acqua, S., Nicoletti, M. (2016). Chemical analysis of essential oils from different parts of Ferula communis L. growing in central Italy. Nat. Prod. Res., 30, 806–813.

Mahendra, P., Bisht, S. (2012). Ferula asafoetida: Traditional uses and pharmacological activity. Pharmacog. Rev., 6, 141–146.

Manolakou, S., Tzakou, O., Yannitsaros, A. (2013). Volatile constituents of Ferula communis L. subsp. communis growing spontaneously in Greece. Rec. Nat. Prod. 7, 54–58.

Marchi, A., Appendino, G., Pirisi, I., Ballero, M., Loi, M.C. (2003). Genetic differentiation of two distinct chemotypes of Ferula communis (Apiaceae) in Sardinia (Italy). Biochem. Syst. Ecol., 31, 1397–1408.

Marongiu, B., Piras, A., Porcedda, S. (2005). Comparative analysis of the oil and supercritical CO2 extract of Ferula communis L. J. Essent. Oil Res.,17, 150–152.

Mau, J.L., Chao, G.R., Wu, K.T. (2001). Antioxidant properties of methanolic extracts from several ear mushrooms. J. Agric. Food Chem., 49, 5461–5467.

Nabavi, S.F., Ebrahimzadeh, M.A., Nabavi, S.M., Eslami, B. (2010). Antioxidant activity of flower, stem and leaf extracts of Ferula gummosa Boiss. Grasas Aceites, 61, 244–250.

Nguir, A., Mabrouk, H., Douki, W., Ben Ismail, M., Ben Jannet, H., Flamini, G., Hamza, M.A. (2016). Chemical composition and bioactivities of the essential oil from different organs of Ferula communis L. growing in Tunisia. Med. Chem. Res., 25, 515–525.

Rahali, F.Z., Kefi, S., Bettaieb Rebey, I., Hamdaoui, G., Tabart, G., Kevers, C., Franck, T., Mouithys-Mickalad, A., Hamrouni Sellemi, I. (2018). Phytochemical composition and antioxidant activities of different aerial parts extracts of Ferula communis L. Plant. Biosys., 153, 213–221.

Rahali, F.Z., Lamine, M., Gargouri, M., Bettaieb Rebey, I., Hammami, M., Hamrouni Sellemi, I. (2016). Metabolite profiles of essential oils and molecular markers analysis to explore the biodiversity of Ferula communis: Towards conservation of the endemic giant fennel. Phytochem., 124, 58–67.

Rubiolo, P., Matteodo, M., Riccio, G., Ballero, M., Christen, P., Fleury-Souverain, S., Veuthey, J.L., Bicchi, C. (2006). Analytical discrimination of poisonous and nonpoisonous chemotypes of giant fennel (Ferula communis L.) through their biologically active and volatile fractions. J. Agric. Food Chem., 54, 7556–7563.

Saleem, M., Alam, A., Sultana S. (2001). Asafoetida inhibits early events of carcinogenesis: a chemopreventive study. Life Sci., 68, 1913–1921.

Seemal, J.T., Saleem, M., Ahmad, M., Waheed, I., Bhatty, M.K. (1988). Lipid composition of Ferula jaeschkeana: Presence of an odd fatty acid. Pak. J. Sci. Ind. Res., 31, 626–628.

Singh, M.M., Agnihotri, A., Garg, S.N., Agarwal, S.K., Gupta, D.N., Keshri, G., Kamboj, V.P. (1988). Antifertility and hormonal properties of certain carotane sesquiterpenes of Ferula jaeschkeana. Planta Med., 54, 492–494.

Download

Published
2021-02-26



Fatma Zohra Rahali 
Laboratory of Medicinal and Aromatic Plants, Biotechnology Center of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
Myriam Lamine 
Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
Iness Bettaieb Rebey 
Laboratory of Medicinal and Aromatic Plants, Biotechnology Center of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
Wissem Aidi Wannes 
Laboratory of Medicinal and Aromatic Plants, Biotechnology Center of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia http://orcid.org/0000-0003-3134-0457
Majdi Hammami 
Laboratory of Medicinal and Aromatic Plants, Biotechnology Center of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
Sawsen Selmi 
Laboratory of Medicinal and Aromatic Plants, Biotechnology Center of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
Ahmed Mliki 
Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
Ibtissem Hamrouni Sellami 
Laboratory of Medicinal and Aromatic Plants, Biotechnology Center of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.