In vitro REGENERATION OF Fragraria PLANTS

Marta Rokosa

West Pomeranian University of Technology in Szczecin Department of Plant Physiology and Biochemistry, Juliusza Słowackiego 17, 70-953 Szczecin

Małgorzata Mikiciuk

West Pomeranian University of Technology in Szczecin Department of Plant Physiology and Biochemistry, Juliusza Słowackiego 17, 70-953 Szczecin



Abstract

Fragaria is one of genus in Rosaceae family. The most popular representative is strawberry (Fragaria × ananassa Duch.) and wild (woodland) strawberry (Fragaria vesca L.), which taste attributes are very attractive for a huge number of consumers around the world. The plants have many beneficial traits, such as low-caloric, high amount of antoxidants and vitamin C, laxative, diuretic, astringent, antidiarrheal and antiseptic properties. Cultivation of Fragaria plants is widespread worldwide with particular emphasis on moderate climate zone, also with use of a plant tissue culture method. This thesis showed and contrasted other studies about Fragaria plants propagation under in vitro conditions. In this method the most often used explants are leaf explants. Very rarely are used seeds. Mainly, the plants are propagated on basal medium of mineral composition by Murashige and Skoog in 8 hour dark and 16 hour light contidions. The most efficient cytokinin used to root induction is indole-3-butyric acid (IBA). The plant acclimatization had varying effectiveness – from a few to several dozen survival percent. During micropropagation of Fragaria plants, somaclonal variation occurs, which is dependent on age culture, frequency of passage and medium composition.

Keywords:

micropropagation, Fragaria, strawberry, shoot multiplication

Adak, N., Kaynak, L., Pekemezci, M., Gubbuk, H. (2010). The effect of various hormone types on in vitro propagation of strawberry. Acta Hortic., 829, 305–308.
Alsheikh, M.K., Suso, H.P., Robson, M., Battey, N.H., Wetten, A. (2002). Appropriate choice of antibiotic and Agrobacterium strain improves transformation of antibiotic-
sensitive Fragaria vesca and F. v. semperflorens. Plant Cell Rep., 20, 1173–1180.
Balokhina, N.V., Kaliayeva, M.A., Buryanov, Ya.I. (2000). The elaboration of a shoot regeneration system for the genetic transformation of the wild strawberry (Fragaria
vesca L.). Biotekhnologiya, 16(1), 46–51.
Barbosa, L.M.P., de Paiva Neta, V.B., Dias, L.L.C., Festucci-Buselli, R.A., Alexandre, R.S., Iarema, L., Finger, F.L., Otoni, W.C. (2013). Biochemical and morpho-anatomical analyses of strawberry vitroplants hyperhydric tissues affected by BA and gelling agents. Revista Ceres Viçosa, 60(2), 152–160.
Barcelo, M., El-Mansouri, I., Mercado, J.A., Quesada, M.A., Alfaro, F.P. (1998). Regeneration and transformation via Agrobacterium tumefaciens of the strawberry
cultivar Chandler. Plant Cell Tiss. Org., 54, 29–36.
Bhatt, I.D., Dhar, U. (2000). Micropropagation of Indian wild strawberry. Plant Cell Tiss. Org., 60(2), 83–88.
Biswas, M.K., Dutt, M., Roy, U.K., Islam, R., Hossain, M. (2009). Development and evaluation of in vitro somaclonal variation in strawberry for improved horticultural
traits. Sci. Hortic., 122(3), 409–416.
Borkowska, B. (2000). Morphological and physiological characteristics of micropropagated strawberry plants rooted in vitro or ex vitro. Sci. Hortic., 89, 195–206.
Boxus, P. (1974). The production of strawberry plants by in vitro micro-propagation. J. Hortic. Sci. 49, 209–210.
Boxus, P., Quoirin, M., Lame, J.M. (1977). Large scale propagation of strawberry plants from tissue culture. In: Applied and fundamental aspects of plant, tissue and organ culture, Reinert, J., Bajaj, Y.P.S. (eds). Springer-Verlag, New York, p. 130–143.
Cameron, J.S., Hancock, J.E. (1986). Enhanced vigor in vegetative progeny of micropropagated strawberry plants. HortScience, 21, 1225–1226.
Debnath, S.C. (2005). Strawberry sepal: another explants for thidazuron-induced adventitious shoot regeneration. In Vitro Cell Dev-Pl., 41, 671–676.
Debnath, S.C. (2006). Zeatin overcomes thidiazuroninduced inhibition of shoot elongation and promotes rooting in strawberry culture in vitro. J. Hortic. Sci. Biotech.,
81(3), 349–354.
Debnath, S.C. (2009). Characteristics of strawnerry plants propagated by in vitro bioreactor culture and ex vitro propagation method. Eng. Life Sci., 9(3), 239–245.
El Mansouri, I., Mercado, A., Valpuesta, V., Lopez-Aranda, J.M., Pliego-Alfaro, F., Quesada, M.A. (1996).
Shoot regeneration and Acrobacterium – mediated transformation of Fragaria vesca L. Plant Cell Rep., 15, 642–646.
Foucault, C., Letouze, R. (1987). In vitro: regeneration de plantes de Fraisier a partir de fragmentes de petiole et de bourgeons floraux. Biol. Plantarum., 29, 409–414.
Fridborg, G., Eriksson, T. (1975). Partial reversal by cytokinin and (2-chloroethyl)-trimethyl-ammoniun chloride of near-ultraviolet inhibited growth and morphogenesis in callus cultures. Physiol. Plantarum., 34, 162–166.
Gantait, S., Mandal, N., Nandy, S. (2011). Advances in Micropropagation of Slected Aromatic Plants: A Review on Vanilla and Strawberry. Am. J. Biochem. Mol. Biol., 1(1), 1–19.
Gruchała, A., Korbin, M., Żurawicz, E. (2004). Conditions of transformation and regeneration of “Induka” and “Elista” strawberry plants. Plant Cell Tiss. Org., 79,
153–160, 2004.
Haberlandt, G. (1902). Plant cell culture experiment with isollierten. S. B. Vienna Ways Sci., 111, 69–92.
Haddadi, F., Aziz, M.A, Saleh, G, Rashid, A.A., Kamaladini, H. (2010). Micropropagation of strawberry cv. Camarosa: Prolific shoot regeneration from in vitro shoot tips using thidiazuron with 6-benzylaminopurine. HortScience, 45(3), 453–456.
Harris, D.C., Simpson, D.W., Bell, J.A. (1997). Studies on the possible role of micropropagation in the dissemination of the strawberry crown rot pathogen Phytophthora
cactorum. J. Hortic. Sci., 72, 125–133.
Haymes, K.M., Davis, T.M. (1998). Agrobacteriummediated transformation of “Alpine” Fragaria vesca, and transmission of transgenes to R1 progeny. Plant Cell Rep., 17, 279–283.
Huetteman, C.A., Preece, J.E. (1993). Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tiss. Org., 33, 105–119.
Husaini, A.M. (2010). Pre- and post-agroinfection strategies for efficient leaf disk transformation and regeneration of transgenic strawberry plants. Plant Cell Rep.,
29, 97–110.
Husaini, A.M., Srivastava, D.K. (2006). Plant regeneration and Agrobacterium-mediated gene transfer studies in strawberry tissues (Fragaria × ananassa Duch.). Asian
J. Microbiol. Biotechnol. Environ. Sci., 8(3), 671–678.
Infante, R., Mazzara, M., Rosati, P. (1998). Growth estimation of in vitro cultured callus and plant regeneration from leaf disk and petiole callus of musk strawberry
(Fragaria moschata Duch.) Subcultured for 18 months. J. Jpn. Soc. Hortic. Sci., 67(1), 39–43.
Jemmali, A., Boxus, Pn., Dekegel., Van Huele, G. (1994). Occurence of spontaneous shoot regeneration on leaf stipules in relation to hyperflowering response in micropropagated strawberry plantlets. In Vitro Cell Dev. Biol., 30(4), 192–195.
Jemmali, A., Boxus, Ph., Kevers, C., Gasoar, T. (1995). Carry-over of Morphological and biochemical characteristics associated with hyperfloweting of micropropagated
strawberries. J. Plant. Physiol., 147, 435–440.
Jemmali, A., Elloumi, N., Kevers, C., Dommes, J. (2002). Morphological and hormonal characterization of strawberry vitroplants raised through axillary or stipular adventitious shooting. Plant Growth Regul., 38, 273–278.
Jeong, H.B., Ha, S.H., Kang, K.Y. (1996). In vitro multiplication of strawberry by vertical rotary culture of shoot tip. RDA J. Agr. Sci. Biotechnol., 38(1), 273–278.
Jones, O.P., Waller, B.J., Beech, M.G. (1988). The production of strawberry plants from callus cultures. Plant Cell Tiss. Org., 12, 235–241.
Jones, C.M., Mes, P., Myers, J.R. (2003). Characterization and inheritance of the anthocyanin fruit (Aft) tomato. J. Hered., 94, 449–456.
Kaeppler, S.M., Phillips, R.L. (1993). Tissue cultureinduced DNA methylation variation in Maize. P. Natl. Acad. Sci. USA, 90(19), 8773–8776.
Karhu, S. (2001). Growth characteristics of micropropagated strawberries. Acta Hortic., 560, 539–542.
Karhu, S., Hakala, K. (2002). Micropropagated strawberries on the field. Acta Hortic., 567, 321–324.
Karim, R., Ahmed, F., Krishna Roy, U., Ara, T., Islam, R., Hossain, M. (2015). Varietal improvement of Strawberry (Fragaria × ananassa Duch.) through somaclonal
variation using in vitro techniques. J. Agric. Sci. Technol., 17(4), 977–986.
Kaur, R., Gautam, H., Sharma, D.R. (2005). A low cost strategy for micropropagation of strawberry (Fragaria × ananassa Duch.) cv. Chandler. Acta Hortic., 696, 129–133.
Kaushal, K., Nath, A.K., Kaundal, P., Sharma, D.R. (2004). Studies on somaclonal variation in strawberry (Fragaria × ananassa Duch.) cultivars. Acta Hortic., 662, 269–275.
Khan, S., Spoor, W.A. (2004). Study of an in vitro callus culture and regeneration system from leaf disc explants in strawberry (Fragaria x ananassa) cv. Tango. Int. J.
Biol. Biotechnol., 68, 397–401.
Koruza, B., Jeleska, S. (1993). Influence of meristem culture and virus elimination on phenotypical modifications of grapevine (Vitis vinifera L., cv. Refosk). Vitis, 32, 59–60.
Kumar, M.B., Barker, R.E., Reed, B.M. (1999). Morphological and molecular analysis of genetic stability in micropopagated Fragaria × ananassa cv. Pocahontas. In vitro Cell. Dev. Biol.–Plant, 35, 254–258.
Lal, M. Sharma, S., Hegde, M.V. (2003). Micropropgation of strawberry (Fragaria × ananassa Duch.). Indian J. Agr. Res., 37, 231–234.
Lamari, Z., Landsberger, S., Braisted, J., Neggache, H., Larbi, R. (2008). Trace element content of medicinal plants from Algeria. J. Radioanal. Nucl. Ch., 276(1), 95–99.
Landi, L., Mezzetti, B. (2006). TDZ, auxin and genotype effects on leaf organogenesis in Fragaria. Plant Cell Rep., 25, 281–288.
Larkin, P.J., Scowcroft, W.R. (1981). Somaclonal variation – a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet., 60, 197–214.
Lines, R., Kelly, G., Milinkovic, M., Rodoni, B. (2006). Runner certification and virus elimination in commercial strawberry cultivars in Australia. Acta Hortic., 708, 253–254.
Liu, Z.R., Sanford, J.C. (1988). Plant regeneration by organogenesis from strawberry leaf and runner tissue. HortScience, 23, 1057–1059.
López-Aranda, J.M., Pilego-Alfaro, E., López-Navidad, I., Barceló-Muñoz, E. (1994). Micropropagation of strawberry (Fragaria × ananassa Duch.). Effect of mineral salts, benzyladenine levels and number of subcultures on the in vitro and field behaviour of the obtained microplants and the fruiting capacity of their progeny. J. Hortic. Sci., 69(4), 625–637.
Maheswaran, G., Williams, E.G. (1987). Uniformity of plants regenerated by direct somatic embryogenesis from zygotic embryos of Trifolium repens. Ann. Bot., 59, 93–97.
Małodobry, M., Dziedzic, E., Lech, W. (1997). Shoot cultures of strawberry cv. Syriusz. Folia Hort., 9(1), 105–112.
Mathews, H., Wagoner, W., Kellogg, J., Bestwick, R. (1995). Genetic transformation of strawberry: stable integration of a gene to control biosynthesis of ethylene.
In Vitro Cell Dev. Biol., 31, 36–43.
Meins, F. (1983). Heritable variation in plant cell culture. Annu. Rev. Plant Biol., 34, 327–346.
Mohamed, F., Swartz, H.J., Buta, J.G. (1991). The role of abscisic acid and plant growth regulators in tissue culture induced rejuvenation of strawberry ex vitro. Plant
Cell Tiss. Org., 25, 75–84.
Mohamed, F.H., Beltagi, M.S., Ismail, M.A., Omar, G.F. (2007). High frequency, direct shoot regeneration from greenhouse-derived leaf disks of six strawberry cultivars.
Pak. J. Biol. Sci., 10(1), 96–101.
Mohan, R., Chuiu, E.A., Biasi, L.A., Soccol, C.R. (2005). Alternative in vitro propagation: use of sugarcane bagasse as a low cost support material during rooting stage of strawberry cv. Dover. Braz. Arch. Biol. Techn., 48, 37–42.
Monticelli, S., Gentile, A., Damiano, C. (2002). Regeneration and Agrobacterium-mediated transformation in stipules of strawberry. Acta Hortic., 567, 105–107.
Morozova, T. (2002). Genetic stability of pure lines of Fragaria vesca L. in micropropagation and long-term storage in vitro. Acta Hortic., 567, 85–88.
Munir, M., Iqbal, S., Baloch, J.U.D., Khakwani, A.A. (2015). In vitro explant sterilization and bud initiation studies of four strawberry cultivars. J. Appl. Hortic., 17(3), 192–198.
Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, 473–497.
Nehra, N.S., Stushnoff, C., Kartha, K.K. (1989). Direct shoot regeneration from leaf discs. J. Am. Soc. Hortic. Sci., 114, 1014–1018.
Nehra, N.S., Stushnoff, C., Kartha, K.K. (1990). Regeneration of plants from immature leaf-derived callus of strawberry (Fragaria × ananassa). Plant Sci., 66(1), 119–126.
Nehra, N.S., Kartha, K.K., Stushnoff, Giles, K.L. (1992). The influence of plant growth regulator concentrations and callus age on somaclonal variation in callus culture
regenerants of strawberry. Plant Cell Tiss. Org., 29, 257–268.
Nehra, N.S., Kartha, K.K., Stushnoff., Giles, K.L. (1994). Effect of in vitro propagation methods on field performance of two strawberry cultivars. Euphytica, 76, 107–115.
Nyman, M., Wallin, A. (1988). Plant regeneration from strawberry (Fragaria × ananassa) mesophyll protoplasts. J. Plant. Physiol., 133, 375–377.
Nyman, M., Wallin, A. (1992). Improved culture technique for strawberry (Fragaria × ananassa Duch.) protoplasts and the determination of DNA content in protoplast
derived plants. Plant Cell Tiss. Org., 30, 127–133.
Oosumi, T., Gruszewski, H.A., Blischak, L.A., Baxter, A.J., Wadl, P.A., Shuman, J.L., Veilleux, R.E., Shulaev, V. (2006). High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics. Planta, 223, 1219–1230.
Owen, H.R., Miller, A.R. (1996). Haploid plant regeneration from anther cultures of three North American cultivars of strawberry (Fragaria × ananassa Duch.). Plant Cell Rep., 15, 905–909.
Pallavi C.M., Rekha, R., Neelambika, T.M. (2011). Indirect somatic embryogenesis from petiole segment in strawberry cv. Sweet Charlie. Indian J. Hortic., 68(1), 24–27.
Passey, A.J., Barrett, K.J., James, D.J. (2003). Adventitous shoot regeneration from seven commercial strawberry cultiuvars (Fragaria × ananassa Duch.) using a range
of explants types. Plant Cell Rep., 21, 397–401.
Petrovic, D., Jacimovic-Plavsic, M. (1990). Propagation of the strawberry cultivar Senga Sengana by in vitro meristem culture. Nauka Praksi, 20(1), 11–18.
Popescu, A.N., Isac, V.S., Coman, M.S., Radulescu, M.S. (1997). Somaclonal variation in plants regenerated by organogenesis from callus culture of strawberry (Fragaria
× ananassa). Acta Hortic., 439, 89–96.
Rattanpal, H.S., Gill, M.I.S., Sangwan, A.K. (2011). Micropropagation of strawberry through meristem culture. Acta Hortic., 890, 149–154.
Rekha, R., Mandave, P., Meti, N. 2012. Micropropagation of strawberry cultivar Sweet Charlie through axillary shoot proliferation. J. Appl. Hortic., 14(1), 71–73.
Ricardo, Y.G., Coll Y., Castagnaro, A., Diaz, Ricci, J.C. (2003). Transformation of strawberry cultivar using a modified regeneration medium. HortScience, 38(2), 277–280
Rugini, E., Orlando, R. (1992). High-efficiency shoot regeneration from calluses of strawberry (Fragaria × ananassa Duch.) stipules of in vitro shoot cultures. J. Hortic. Sci., 67, 577–582.
Rzepka-Plevnes, D., Kulpa, D., Gołębiowska, D., Porwolik, D. (2011). Effects of auxins and humic acids on in vitro rooting of strawberry (Fragaria × ananassa Duch.). J. Food Agric. Environ., 9(3–4), 592–595.
Sansavini, S., Rosati, E., Gaggioli, D., Toshi, M.E. (1990). Inheritance and stability of somaclonal variation in micropropagated strawberry. Acta Hortic. (Wageningen),
280, 375–384.
Simpson, D.W., Bell, J.A. (1989). The response of different genotypes of Fragaria × ananassa and their seedling progenies to in vitro micropropagation and the effects
of varying the concentration of 6-benzylaminopurine in the proliferation medium. Plant Cell Tiss. Org., 17, 225–234.
Singh, A.K., Pandey, S.N. (2004). Genotypic variation among strawberry cultivars for shoot organogenesis. Acta Hortic., 662(1), 277–280.
Skupień, K., Oszmiański, J. (2004). Comparison of six cultivars of strawberries (Fragaria × ananasa Duch.) grow in northwest Poland. Eur. Food Res. Technol., 219, 66–70.
Soria, C., Gálvez-Farfán, J., Ariza, M.T., Medina, J.J., González-Benito, M.E. (2007). Implementing a strawberry cryogenic genebank: A comparison in agronomic traits of plants derived from cryopreserved apices, in vitro micropropagation, and conventional propagation. Adv. Hortic. Sci., 21(4), 207–210.
Sorvari, S., Ulvinen, S., Hietarante, T., Hiirsalmi, H. (1993). Preculture medium promotes direct shoot regeneration from micro-propagated strawberry leaf discs. HortScience, 28, 55–57.
Sowik, I., Markiewicz, M., Michalczuk, L. (2015). Stability of Vertivillium dahliae resistance in tissue culture – derived strawberry somaclones. Hortic. Sci. (Prague),
42(3), 141–148.
Steward, F.C., Mapes, M.O., Mears, K. (1958). Growth and organized development of cultures cells: II. Organisation in cultured grown from freely suspended cells. Am. J. Bot., 45, 705–708.
Sutter, E.G., Ahmadi, H., Labavitch, J.M. (1997). Direct regeneration of strawberry (Fragaria × ananassa Duch.) from leaf disks. Acta Hortic., 447, 243–245.
Svensson, M., Johansson, L.B. (1992). Anther culture of Fragaria × ananassa: Environmental factors and medium components affecting microspore divisions and callus production. J. Hortic. Sci., 69(3), 417–426.
Tian, M., Gu, G., Zhu, M. (2003). The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis of strawberry callus. Plant
Sci., 165(2003), 701–707.
Toyoda, H., Horikoshi, K., Inaba, K., Ouchi, S. (1990). Plant regeneration of Callus Tissues Induced from Leaf Explants of Strawberry. Plant Tissue Cult. Lett., 7(1), 38–41.
Toyoda, H., Horikoshi, K., Yamano, Y., Ouchi, S. (1991). Selection for Fusarium wilt disease resistance from regenerants derived from leaf callus strawberry. Plant Cell Rep., 10, 167–170.
Vasil, V., Vasil, K. (1982). The ontogeny of somatic embryos of Pennisetum americanum (L) K. Schum. in cultured immature embryos. Bot. Gazette, 143, 454–465.
Yildirim, A.B., Turker, A.U. (2014). Effects of regeneration enhancers on micropropagation of Fragaria vesca L. and phenolic content comparison of field-grown and
in vitro-grown plant materials by liquid chromatography-electrospray tandem massspectrometry (LC–ESIMS/MS). Sci Hortic., 169, 169–178.
Yonghua, Q., Shanglong, Z., Asghar, A., Lingxiao, Z., Qiaoping, Q., Kunsong, C., Changjie, X. (2005). Regeneration mechanism of Toyonoka strawberry under different color plastic films. Plant Sci., 168(6), 1425–1431.
Zhang, Q., Folta, K.M., Davis, T.M. (2014). Somatic embryogenesis, tetraploidy, and variant leaf morphology in transgenic diploid strawberry (Fragaria vesca subspecies
vesca ‘Hawaii 4’). BMC Plant Biol., 14, 14–23.
Zhao, Y., Liu, Q.Z., Davis, R.E. (2004). Transgene expression in strawberries driven by a heterologous phloemspecific promoter. Plant Cell Rep., 23, 224–230.
Żebrowska, J., Kaczmarska, E., Gawroński, J. (2015). Comparative studies on the agronomic value of in vitro and conventionally propagated strawberry (Fragaria ×
ananassa Duch.) plants. Acta Sci. Pol. Hortorum Cultus, 14(3), 25–35.
Żebrowska, J.I. (2011). Efficacy of resistance selection to Verticillium wilt in strawberry (Fragaria × ananassa Duch.) tissue culture. Acta Agrobot., 64, 3–12.
Żebrowska, J.I., Hortyński, J. (2002). Plant regeneration from leaf explants in strawberry (Fragaria × ananassa Duch.). Acta Hortic., 567, 313–315.
Download

Published
2017-10-31



Marta Rokosa 
West Pomeranian University of Technology in Szczecin Department of Plant Physiology and Biochemistry, Juliusza Słowackiego 17, 70-953 Szczecin
Małgorzata Mikiciuk 
West Pomeranian University of Technology in Szczecin Department of Plant Physiology and Biochemistry, Juliusza Słowackiego 17, 70-953 Szczecin



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)