Nikolaos Kapoulas

Regional Development Agency of Rodopi, 69100 Komotini, Greece

Zoran S. Ilić

Faculty of Agriculture Priština-Lešak, 38219 Lešak, Serbia

Athanasios Koukounaras

Faculty of Agriculture, Aristotle University of Thessaloniki, Greece

Ioannis Ipsilantis

Faculty of Agriculture, Aristotle University of Thessaloniki, Greece


In this study, the effect of arbuscular mycorrhizal fungus AMF Rhizophagus intraradices inoculum (prior or with transplanting) to different pepper type (Capsicum annuum L.) cv. Arlequin F1 (long fruits) and Raiko F1 (bell pepper), on plant growth and physiological parameters in response to elevated soil P concentrations from organic greenhouse production with enhanced soil salinity, was investigated. To explain the physiological growth of mycorrhizal inoculated (M) and non-mycorrhizal inoculated (NM) plants, the parameters of fungal root length colonization, shoot concentration of P an N during growth, plant height, width of stem, yield, number of fruit per plant and also the quality parameters of fruits such as soluble solid content (SSC), fruit color, mineral profile, total soluble phenolics (TSP) and antioxidant activity (FRAP), were determined. This study showed that application of AMF in cv. Raiko cultivated in high P saline soil generally enhanced growth, fruit yield and number of fruits per plant when inoculated at planting time in the greenhouse. AM inoculated plants, regardless of the time of application in cv. Arlequin grown under the same conditions, did not have any significant differences in comparison with NM plants. Arbuscular mycorrhizal inoculation has great potential in enhancing the pepper growth and yield even in high soil P, however, because of the complexity and interaction of involved genotypes of pepper and AMF, the method and time of inoculation, the system of pepper production and environmental conditions, as well as assays have to be performed to verify positive effects.


Rhizophagus intraradices, Capsicum annuum, manure, organic farming, color, SSC, phenols, antioxidants

Abdel Latef, A.A. (2013). Growth and some physiological activities of pepper (Capsicum annuum L.) in response to cadmium stress and mycorrhizal symbiosis. J. Agric. Sci. Technol., 15, 1437–1448.

Alberton, O., Kuyper, T.W., Gorissen, A. (2005). Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO2. New Phytol., 167, 959–868.

Al-Karaki, G.N. (2017). Effects of mycorrhizal fungi inoculation on green pepper yield and mineral uptake under irrigation with saline water. Adv. Plants Agric. Res., 6(5), 00231

Avio, L., Sbrana, C., Giovannetti, M., Frassinetti, S. (2017). Arbuscular mycorrhizal fungi affect total phenolics content and antioxidant activity in leaves of oak leaf lettuce varieties. Sci. Hortic., 224, 265–271.

Bagyaraj, D.J., Sharma, M.P., Maiti, D. (2015). Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Curr. Sci., 108, 1288–1293.

Baum, C., El-Tohamy, W., Gruda, N. (2015). Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Sci. Hortic., 187, 131–141.

Beltrano, J., Ruscitti, M., Arango, M.C., Ronco, M. (2013). Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and P levels. J. Soil Sci. Plant Nutr., 13, 123–141.

Benzie, I.F.F., Strain, J.J. (1999). Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Meth. Enzymol., 299, 15–27.

Boonlue, S., Surapat, W., Pukahuta, C., Suwanarit, P., Suwanarit, A., Morinaga, T. (2012). Diversity and efficiency of arbuscular mycorrhizal fungi in soils from organic chili (Capsicum frutescens) farms. Mycoscience, 53, 10–16.

Bravo, A., Brands, M., Wewer, V., Dörman, P., Harrison, M.J. (2017). Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. New Phytol., 214, 1631–1645

Castillo, R.C., Sotomayor, S.L., Ortiz, O.C., Leonelli, C.G., Borie, B.F., Rubio, H.R. (2009). Effect of arbuscular mycorrhizal fungi on an ecological crop of chili peppers (Capsicum annuum L.). Chilean J. Agric. Res., 69, 79–87.

Dai, O., Singh, R.K., Nimasow, G. (2011). Effect of arbuscular mycorrhizal (AM) inoculation on growth of Chili plant in organic manure amended soil. Afr. J. Microb. Res., 5, 5004–5012.

Diaz Franco, A., Alvarado Carrillo, M., Ortiz Chairez, F., Grageda Cabrera, O. (2013). Plant nutrition and fruit quality of pepper associated with arbuscular mycorrhizal in greenhouse. Rev. Mex. Cienc Agríc., 4, 315–321.

Douds, D.D., Jr., Nagahashi, G., Reider, C., Hepperly, P.R. (2007). Inoculation with arbuscular mycorrhizal fungi increases the yield of potatoes in a high P soil. Biol. Agric. Hortic., 25, 67–78.

Douds, D.D., Lee, J., Rogers, L., Lohman, M.E., Pinzon, N., Ganser, S. (2012). Utilization of inoculum of AM fungi produced on-farm for the production of Capsicum annuum: A summary of seven years of field trials on a conventional vegetable farm. Biol. Agric. Hortic., 28, 129–145.

Duc, N.H., Mayer, Z., Pek, Z., Helyes, L., Posta, K. (2017). Combined inoculation of arbuscular mycorrhizal fungi, Pseudomonas fluorescens and Trichoderma spp. for enhancing defense enzymes and yield of three pepper cultivars. App Ecol. Environ. Res., 15, 1815–1829.

Evelin, H., Kapoor, R., Giri, B. (2009). Arbuscular mycorrihizal fungi in alleviation of salt stress: a review. Ann. Bot., 104, 1263–1280.

Hernádi, I., Sasvári, Z., Albrechtová, J., Vosátka, M., Posta, K. (2012). Arbuscular mycorrhizal inoculant increases yield of spice pepper and affects the indigenous fungal community in the field. HortScience, 47, 603–606.

Ipsilantis, I., Samourelis, C., Karpouzas, D.G. (2012). The impact of biological pesticides on arbuscular mycorrhizal fungi. Soil Biol. Biochem., 45, 147–155.

Jamiołkowska, A., Księżniak, A., Hetman, B., Kopacki, M., Skwaryło-Bednarz, B., Gałązka, A., Thanoon, A.H. (2017). Interactions of arbuscular mycorrhizal fungi with plants and soil microflora. Acta Sci. Pol. Hortorum Cultus, 16, 89–95.

Klironomos, J.N. (2003). Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 84, 2292–2301.

Koide, R.T., Mosse, R.T. (2004). A history of research on arbuscular mycorrhizal symbiosis. Mycorrhiza, 14, 145–163.

Maboko, M.M., Bertling, I., Du Plooy, C.P. (2013). Arbuscular mycorrhiza has limited effects on yield and quality of tomatoes grown under soilless cultivation. Acta Agric. Scand. Sec. B Soil Plant Sci., 63, 261–270.

McGonigle, T.P., Miller, M.H., Evans, D.G., Fairchild, G.S., Swan, J.A. (1990). A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol., 115, 495–501.

Mäder, P., Edenhofer, S., Boller, T., Wiemken, A., Niggli, U. (2000). Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol. Fertil. Soils, 31, 150–156.

Martin, C.A., Stutz, J.C. (2004). Interactive effects of temperature and arbuscular mycorrhizal fungi on growth, P uptake and root respiration of Capsicum annuum L. Mycorrhiza, 14, 241–244.

Mena-Violante, H.G., Ocampo-Jimenez, O., Dendooven, L., Martinez-Soto, G., Gonzalez-Castaneda, J., Davies, F.T., Olalde-Portugal, V. (2006). Arbuscular mycorrhizal fungi enhanced fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought. Mycorrhiza, 16, 261–267.

Mummey, D.L., Antunes, P.M., Rillig, M.C. (2009). Arbuscular mycorrhiza fungi pre-inoculant identity determines community composition in roots. Soil Biol. Biochem., 41, 1173–1179.

Ortas, I., Sari, N., Akpinar, C., Yetisir, H. (2011). Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Sci. Hortic., 128, 92–98.

Ortas, I. (2012). The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Res., 125, 35–48.

Pellegrino, E., Bedini, S., Avio, L., Bonari, E., Giovannetti, M. (2011). Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biol. Biochem., 43, 367–376.

Pereira, J.A.P., Vieira, I.J.C., Freitas, M.S.M., Prins, C.L., Martins, M.A., Rodrigues, R. (2016). Effects of arbuscular mycorrhizal fungi on Capsicum spp. J. Agric. Sci., 154, 828–849.

Ruiz-Lozano, J.M., Aroca, R., Zamarreño, Á.M., Molina, S., Andreo-Jiménez, B., Porcel, R., García-Mina, J.M., Ruyter-Spira, C., López-Ráez, J.A. (2016). Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ., 39, 441–452.

Russo, V.M., Perkins-Veazie, P. (2010). Yield and nutrient content of bell pepper pods from plants developed from seedlings inoculated, or not, with microorganisms. HortScience, 45, 352–358.

Scalbert, A., Monties, B., Janin, G. (1989). Tannins in wood: Comparison of different estimation methods. J. Agric. Food Chem., 37, 1324–1329.

Smith, S.E., Jakobsen, I., Grønlund, M., Smith, F.A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol., 156, 1050–1057.

Smith, F.A., Smith, S.E. (2011). What is the significance of the arbsucular mycorrhizal colonisation of many economically important crop plants? Plant Soil, 348, 63–79.

Steinkellner, S., Hage-Ahmed, K., García-Garrido, J.M., Illana, A., Ocampo, J.A., Vierheilig, H. (2012). A comparison of wild-type, old and modern tomato cultivars in the interaction with the arbuscular mycorrhizal fungus Glomus mosseae and the tomato pathogen Fusarium oxysporum sp. lycopersici. Mycorrhiza, 22, 189–194.

Sylvia, D.M., Hammond, L.C., Bennett, J.M., Haas, J.H., Linda, S. (1993). Field response of maize to a VAM fungus and water management. Agron. J., 85, 193–198.

Tanwar, A., Aggarwal, A., Kadian, N., Gupta, A. (2013). Arbuscular mycorrhizal inoculation and super phosphate application influence plant growth and yield of Capsicum annuum. J. Soil Sci. Plant Nutr., 13, 55–66.

Vincente-Sánchez, J., Nicolás, E., Pedrero, F., Alarcón, J.J., Maestre-Valero, J.F., Fernández, F. (2014). Arbuscular mycorrhizal symbiosis alleviates detrimental effects of saline reclaimed water in lettuce plants. Mycorrhiza, 24, 339–348.

Vosátka, M., Albrechtová, J., Patten, R. (2008). The international market development for mycorrhizal technology. In: Mycorrhiza, Varma, A. (ed.). Springer-Verlag, Berlin, 419–438.

Zhu, X.Q., Wang, C.Y., Chen, H., Tang, M. (2014). Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content and calorific value of black locust seedlings. Photosynthetica, 52, 247–252.



Kapoulas, N., Ilić, Z. S., Koukounaras, A., & Ipsilantis, I. (2019). APPLICATION OF ARBUSCULAR MYCORRHIZAL INOCULUM IN GREENHOUSE SOIL WITH MANURE INDUCED SALINITY FOR ORGANIC PEPPER PRODUCTION. Acta Scientiarum Polonorum Hortorum Cultus, 18(1), 129–139.

Nikolaos Kapoulas 
Regional Development Agency of Rodopi, 69100 Komotini, Greece
Zoran S. Ilić 
Faculty of Agriculture Priština-Lešak, 38219 Lešak, Serbia
Athanasios Koukounaras 
Faculty of Agriculture, Aristotle University of Thessaloniki, Greece
Ioannis Ipsilantis 
Faculty of Agriculture, Aristotle University of Thessaloniki, Greece



Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.


Most read articles by the same author(s)