Effects of salicylic acid application on germination, growth and development of rough lemon (Citrus jambhiri Lush.) under salt stress

Murat Güneri

Muğla Sıtkı Koçman University, Ortaca Vocational School, Horticulture Program, Muğla 48600, Turkey

Zeynel Dalkılıç

Aydın Adnan Menderes University, Faculty of Agriculture, Department of Horticulture, 09100 Aydın, Turkey


Rough lemon (Citrus jambhiri Lush.) – RL, is used as a rootstock for citrus plants in saline conditions. NaCl causes an osmotic stress on plants mainly preventing the water uptake by the roots and thus reducing the plant growth. The objective of this study was to determine the effects of salicylic acid (SA) on germination of seeds and the growth and development of seedlings of RL rootstock under salt stress. For seed germination, a study was conducted in a completely randomized design in a 4 × 4 factorial scheme (SA at 0.00, 0.25, 0.50, or 1.00 mM and NaCl at 0, 50, 100, or 200 mM) with 4 repetitions, totaling 64 plots, of 25 seeds per plot. RL seeds were incubated in SA solutions for 24 h. Then, they were treated with NaCl-containing water in Petri dishes and incubated in the growth chamber at 25°C. For greenhouse experiment, a study was conducted in a randomized complete block in a 4 × 4 factorial scheme (SA at 0.0, 0.5, 1.0, or 2.0 mM and NaCl at 0, 50, 100, or 150 mM) with 3 repetitions, totaling 48 plots, of 2 plants per plot. Some morphological and physiological characteristics were determined. While germination time was extended, germination ratio and radicle extension were decreased in seeds under salt stress compared to control. Moreover, in these conditions the leaf membrane permeability and leaf falling were increased. In turn, plant height, diameter, root and shoot dry weight, leaf relative water content, and leaf chlorophyll were decreased in seedlings. Salt stress had negatively affected seed germination from 97.5% in control to 23.5% in 200 mM NaCl. However, SA treatments significantly decreased plant height to 67.8 cm in 2.0 mM compared to 80.1 cm in control in RL rootstock.


Citrus jambhiri, salinity, seed germination, plant growth and development, stress tolerance

Aalam, L., Sedghi, M., Sofalian, O. (2019). Sodium nitroprusside and salicylic acid decrease antioxidant enzymes activity in soybean. Iranian J. Plant Physiol., 10(1), 3073–3077.

Afzal, I., Rahim, A., Qasim, M., Younis, A., Nawaz, A., Bakhtavar, M.A. (2017). Inducing salt tolerance in French marigold (Tagetes patula) through seed priming. Acta Sci. Pol. Hortorum Cultus, 16(3), 109–118. DOI: https://doi.org/10.24326/asphc.2017.3.11

Ahmad, F., Iqbal, S., Khan, M.R., Abbas, M.W., Ahmad, J., Nawaz, H., Shah, S.M.A., Iqbal. S., Ahmad, M., Ali, M. (2019). Influence of seed priming with salicylic acid on germination and early growth of sesame. Pure Appl. Biol., 8(2), 1206–1213. http://dx.doi.org/10.19045/bspab.2019.80062 DOI: https://doi.org/10.19045/bspab.2019.80062

Al-Hayany, A.M.A., Al-Sarah, E.M., Hathal, N.M. (2017). Effect of foliar application salicylic acid on citrus rootstocks. Iraqi J. Agri. Sci., 48(3), 707–717. DOI: https://doi.org/10.36103/ijas.v48i3.383

Al-Yassin, A. 2004. Influence of salinity on Citrus: a review paper. J. Cent. Eur. Agric., 5(4), 263–272.

Anaya, F., Fghire, R., Wahbi, S., Loutfi, K. (2018). Influence of salicylic acid on seed germination of Vicia faba L. under salt stress. J. Saudi Soc. Agric. Sci., 17(1), 1–8. https://doi.org/10.1016/j.jssas.2015.10.002 DOI: https://doi.org/10.1016/j.jssas.2015.10.002

Aras, S., Eşitken, A. (2019). Dry matter partitioning and salt tolerance via salicylic acid treatment in strawberry plant under salt stress. KSU J. Agric. Nat., 22(Suppl. 2), 337–341. https://doi.org/10.18016/ksutarimdoga.vi.545825 DOI: https://doi.org/10.18016/ksutarimdoga.vi.545825

Azizifar, S., Abdossi, V., Gholami, R., Ghavami, M., Torkashvand, A.M. (2022). Effects of salicylic acid and kaolin on yield physiological traits and fatty acid composition in olive cultivars under regulated deficit irrigation. Acta Sci. Pol. Hortorum Cultus, 21(3), 131–140. https://doi.org/10.24326/asphc.2022.3.12 DOI: https://doi.org/10.24326/asphc.2022.3.12

Bandurska, H., Stroinski, A. (2005). The effect of salicylic acid on barley response to water deficit. Acta Physiol. Plant., 27(3), 379–386. http://dx.doi.org/10.1007/s11738-005-0015-5 DOI: https://doi.org/10.1007/s11738-005-0015-5

Barba-Espín, G., Clemente-Moreno, M.J., Álvarez, S., García-Legaz, M.F., Hernández, J.A., Díaz-Vivancos, P. (2011). Salicylic acid negatively affects the response to salt stress in pea plants. Plant Biol., 13(6), 909–917. https://doi.org/10.1111/j.1438-8677.2011.00461.x DOI: https://doi.org/10.1111/j.1438-8677.2011.00461.x

Bilińska, E., Adamczak, A., Buchwald, W. (2022). Effects of osmopriming and storage temperature on the seed quality of Salvia przewalskii Maxim. Acta Sci. Pol. Hortorum Cultus, 21(1), 3–10. https://doi.org/10.24326/asphc.2022.1.1 DOI: https://doi.org/10.24326/asphc.2022.1.1

Boman, B. J., Zekri, M., Stover, E. (2005). Managing salinity in citrus. HortTchnology, 15(1), 108–113. https://doi.org/10.21273/HORTTECH.15.1.0108 DOI: https://doi.org/10.21273/HORTTECH.15.1.0108

Borsani, O., Valpuesta, V., Botella, M.A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol., 126(3), 1024–1030. https://doi.org/10.1104/pp.126.3.1024 DOI: https://doi.org/10.1104/pp.126.3.1024

Cole, P.L. (1985). Chloride toxicity in Citrus. Irrig. Sci. 6, 63–71.

Çirka, M., Tunçtürk, R., Kulaz, H., Tunçtürk, M. (2022). Effects of salt stress on some growth parameters and biochemical changes in bean (Phaseolus vulgaris L.). Acta Sci. Pol. Hortorum Cultus, 21(3), 53–63. https://doi.org/10.24326/asphc.2022.3.5 DOI: https://doi.org/10.24326/asphc.2022.3.5

Davies, F.S., Albrigo, L.G. (1994). Citrus. CAB International, Oxon, UK.

FAOSTAT (2020). Food and Agriculture Organization of the United Nations. Production – Crops primary. Available: https://www.fao.org/faostat/en/#data/QCL [date of access: 4.04.2022].

Fardus, J., Matin, M.A., Hasanuzzaman, M., Hossain, M.A., Hasanuzzaman, M. (2018). Salicylic acid-induced improvement in germination and growth parameters of wheat under salinity stress. J. Animal Plant Sci., 28(1), 197–207.

Galviz-Fajardo, Y.C., Streck Bortolin, G., Deuner, S., do Amarante, L., Reolon, F., de Moraes, D.M. (2020). Seed priming with salicylic acid potentiates water restriction-induced effects in tomato seed germination and early seedling growth. J. Seed Sci., 42, e202042031. https://doi.org/10.1590/2317-1545v42234256 DOI: https://doi.org/10.1590/2317-1545v42234256

Gonzalez, P., Syvertsen, J.P., Etxeberria, E. (2012). Sodium distribution in salt-stressed citrus rootstock seedlings. HortScience 47(10), 1504–1511. https://doi.org/10.21273/HORTSCI.47.10.1504 DOI: https://doi.org/10.21273/HORTSCI.47.10.1504

Guo, Q., Liu, L., Barkla, B.J. (2019). Membrane lipid remodeling in response to salinity. Int. J. Mol. Sci., 20(17), 1–31. https://doi.org/10.3390/ijms20174264 DOI: https://doi.org/10.3390/ijms20174264

Hayat, Q., Hayat, S., Irfan, M., Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environ. Exp. Bot., 68(1), 14–25. https://doi.org/10.1016/j.envexpbot.2009.08.005 DOI: https://doi.org/10.1016/j.envexpbot.2009.08.005

Hepaksoy, S. (2000). Effect of salinity on citrus. Anadolu J., 10(1), 52–72.

Hernández, J.A., Diaz-Vivancos, P., Barba-Espín, G., Clemente-Moreno, M.J. (2017). On the role of salicylic acid in plant responses to envirenmontal stress. In: Salicylic Acid: A Multifaceted Hormone, Nazar, R., Iqbal, N., Khan, N.A. (eds). Springer Nature Singapore Pte Ltd., 17–34. DOI: https://doi.org/10.1007/978-981-10-6068-7_2

Ibrahim, D.S.M., Eissa, A.M., Attala, A.M.Z., Sabbah, S.M., Khalil, H.A. (2018). Alleviation of salinity stress by exogenous plant growth regulators in three citrus rootstocks. Middle East J. Agric. Res., 7(2), 437–455.

Janda, T., Pál, M., Darkó, É., Szalai, G. (2017). Use of salicylic acid and related compounds to improve the abiotic stress tolerance of plants: practical aspects. In: Salicylic Acid: A Multifaceted Hormone, Nazar, R., Iqbal, N., Khan, N.A. (eds). Springer Nature Singapore Pte Ltd., 35–46. DOI: https://doi.org/10.1007/978-981-10-6068-7_3

Kaushal, M., Kumar, L., Gill, M.I.S., Choudhary, O.P., Bali, S.K. (2013). Effect of salinity on survival and growth performance of in vitro grown rough lemon (Citrus jambhiri Lush.) seeds. Indian J. Biotechnol., 12, 284–286.

Kaya, G. (2021). Germination stomatal and physiological response of rocket (Eruca sativa L.) to salinity. Acta Sci. Pol. Hortorum Cultus, 20(4), 135–144. https://doi.org/10.24326/asphc.2021.4.12 DOI: https://doi.org/10.24326/asphc.2021.4.12

Korkmaz, A. (2005). Inclusion of acetyl salicylic acid and methyl jasmonate into the priming solution improves low temperature germination and emergence of sweet pepper. HortSci., 40(1), 197–200. https://doi.org/10.21273/HORTSCI.40.1.197 DOI: https://doi.org/10.21273/HORTSCI.40.1.197

Lee, S., Kim, S.-G., Park, C.-M. (2010). Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol., 188(2), 626–637. https://doi.org/10.1111/j.1469-8137.2010.03378.x DOI: https://doi.org/10.1111/j.1469-8137.2010.03378.x

Mir, R.A., Aryendu, A., Somasundaram, R. (2021). Salicylic acid and salt stress tolerance in plants: a review. J. Stress Physiol. Biochem., 17(3), 32–50.

Mohamed, H.I., El-Shazly, H.H., Badr, A. (2020). Role of salicylic acid in biotic and abiotic stress tolerance in plants. In: Plant Phenolics in Sustainable Agriculture, Lone, R., Shuab, R., Kamili, A.N. (eds). Springer Nature Singapore Pte Ltd., 533–554. DOI: https://doi.org/10.1007/978-981-15-4890-1_23

Rouse, R.E., Sherrod, J.B. (1996). Optimum temperature for citrus seed germination. Proc. Fla. State Hort. Soc., 109, 132–135.

Sá, F.V.S., Brito, M.E.B., de Figueiredo, L.C., de Melo, A.S., de Silva, L.A., Moreira, R.C.L. (2017). Biochemical component and dry matter of lemon and mandarin hybrids under salt stress. Rev. Bras. Eng. Agric. Ambient., 21(4), 249–253. https://doi.org/10.1590/1807-1929/agriambi.v21n4p249-253 DOI: https://doi.org/10.1590/1807-1929/agriambi.v21n4p249-253

Sakhabutdinova, A.R., Fatkhutdinova, D.R., Shakirova, F.M. (2004) Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of salination. Appl. Biochem. Microbiol. 40, 501–505. https://doi.org/10.1023/B:ABIM.0000040675.29736.91 DOI: https://doi.org/10.1023/B:ABIM.0000040675.29736.91

SAS Institute (1989). SAS/STAT user’s guide. Vol. 2, Version 6.0, 4th Ed., Cary, NC.

Shakirova, F.M., Sakhabutdinova, A.R., Bezrukova, M.V., Fatkhutdinova, R.A., Fatkhutdinova, D.R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci., 164(3), 317–322. https://doi.org/10.1016/s0168-9452(02)00415-6 DOI: https://doi.org/10.1016/S0168-9452(02)00415-6

Sharma, L.K., Kaushal, M., Bali, S.K., Choudhary, O.P. (2013). Evaluation of rough lemon (Citrus jambhiri Lush.) as rootstock for salinity tolerance at seedling stage under in vitro conditions. Afr. J. Biotechnol., 12(44), 6267–6275. DOI: https://doi.org/10.5897/AJB2013.12994

Shiri, M.A., Bakhshi, D. (2011). Effect of salinity stress on some seed germination indices in sour orange (Citrus aurantium). J. Crop Prod. Proc., 1(1), 1–9.

Siavash Moghaddam, S.S., Rahimi, A., Pourakbar, L., Jangjoo, F. (2020). Seed priming with salicylic acid improves germination and growth of Lathyrus sativus L. under salinity stress. YYU J. Agr. Sci., 30(1), 68–79. https://doi.org/10.29133/yyutbd.624649 DOI: https://doi.org/10.29133/yyutbd.624649

da Silva, J.E.S.B., de Paiva, E.P., de Leite, M.S., Torres, S.B., de Souza Neta, M.L., Guirra, K.S. (2019). Salicylic acid in the physiological priming of onion seeds subjected to water and salt stresses. Rev. Bras. Eng. Agric. Ambient, 23(12), 919–924. https://doi.org/10.1590/1807-1929/agriambi.v23n12p919-924 DOI: https://doi.org/10.1590/1807-1929/agriambi.v23n12p919-924

Soliman, M.H., Al-Juhani, R.S., Hashash, M.A., Al-Juhani, F.M. (2016). Effect of seed priming with salicylic acid on seed germination and seedling growth of broad bean (Vicia faba L). Int. J. Agric. Technol., 12(6), 1125–1138.

Syvertsen, J.P., Garcia-Sanchez, F. (2014). Multiple abiotic stresses occurring with salinity stress in citrus. Environ. Exp. Bot., 103, 128–137. http://dx.doi.org/10.1016/j.envexpbot.2013.09.015 DOI: https://doi.org/10.1016/j.envexpbot.2013.09.015

Szalai, G., Pál, M., Árendás, T., Janda, T. (2016). Priming seed with salicylic acid increases grain yield and modifies polyamine levels in maize. Cer. Res. Commun., 44(4), 537–548. https://doi.org/10.1556/0806.44.2016.038 DOI: https://doi.org/10.1556/0806.44.2016.038

Turgutoğlu, E., Şenay, K., Demir, G. (2009). Effects of some pre-sowing treatments on germination of common sour orange rootstocks. Derim, 26, 11–19.

Yıldız, M., Terzi, H., Akçalı, N. (2014). Salicylic acid and polyamines in plant salt stress tolerance. AKU J. Sci. Eng., 14, 7–22. http://dx.doi.org/10.5578/fmbd.7763 DOI: https://doi.org/10.5578/fmbd.7763

Yin, D.J., BU, F.Q., Mu, D.Y., Chen, Q., Zhang, J., Guo, J. (2021). Mechanism of salt tolerance in Vitex trifolia Linn. var. simplicifolia Cham: Ion homeostasis, osmotic balance, antioxidant capacity and photosynthesis. Acta Sci. Pol. Hortorum Cultus, 20(4), 3–16. https://doi.org/10.24326/asphc.2021.4.1 DOI: https://doi.org/10.24326/asphc.2021.4.1

Zekri, M. (1993). Salinity and calcium on emergence, growth and sodium and chloride concentrations of citrus rootstocks. Proc. Fla. State Hort. Soc., 106(1), 18–21. https://doi.org/10.1080/00221589.1993.11516328 DOI: https://doi.org/10.1080/00221589.1993.11516328

Zekri, M., Parsons, L. (1992). Salinity tolerance of citrus rootstocks: Effects of salt on root and leaf mineral concentrations. Plant Soil, 147, 171–181. https://doi.org/10.1007/BF00029069 DOI: https://doi.org/10.1007/BF00029069

Zekri, M., Parsons, L.R. (2017). Effects of non-uniform salinity and calcium on growth and physiology of citrus seedlings. Citrus Res. Technol., 38(2), 169–174. http://dx.doi.org/10.4322/crt.ICC018 DOI: https://doi.org/10.4322/crt.ICC018

Ziogas, V., Tanou, G., Morianou, G., Kourgialas, N. (2021). Drought and salinity in citriculture: optimal practices to alleviate salinity and water stress. Agronomy 11(7), 1283. https://doi.org/10.3390/agronomy11071283 DOI: https://doi.org/10.3390/agronomy11071283



Murat Güneri 
Muğla Sıtkı Koçman University, Ortaca Vocational School, Horticulture Program, Muğla 48600, Turkey https://orcid.org/0000-0002-2086-8953
Zeynel Dalkılıç 
Aydın Adnan Menderes University, Faculty of Agriculture, Department of Horticulture, 09100 Aydın, Turkey https://orcid.org/0000-0002-0946-1036


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.