THE POTENTIAL APPLICATION OF Origanum dubium Boiss. ESSENTIAL OIL AS A SEED PROTECTANT AGAINST BEAN AND TOMATO SEED-BORNE BACTERIAL PATHOGENS

Hüseyin Basim

Plant Protection Department, Akdeniz University, Antalya, Turkey

Kenan Turgut

Department of Field Crops, Akdeniz University, Antalya, Turkey

Begum Kaplan

Department of Field Crops, Akdeniz University, Antalya, Turkey

Esin Basim

Department of Organic Agriculture, Akdeniz University, Antalya, Turkey

Ali Turgut

Plant Protection Department, Akdeniz University, Antalya, Turkey


Abstract

Origanum dubium is a valuable wild oregano species of the natural flora of Antalya, Turkey. In this study, we extracted essential oil (EO) by hydro-distillation of the aerial parts of selected O. dubium chemotype with highest EO content, and analyzed by gas chromatography/mass spectrometry. Carvacrol was the pri- mary component (85.9%) among 24 different compounds in the EO. The volatile test showed minimum inhibitory effect of the EO against Xanthomonas axonopodis pv. vesicatoria, Clavibacter michiganen- sis subsp. michiganensis, Xanthomonas axonopodis pv. phaseoli, Xanthomonas axonopodis pv. phaseoli var. fuscans, and Pseudomonas syringae pv. tomato, at 309, 303, 318, 254, and 901 µL/mL, respectively. A 1-hour treatment of bean and tomato seeds in the volatile phase of the EO effectively sterilized the seeds from bacterial pathogens without inhibiting their germination. To the best of our knowledge, this is the first study on the potential for the use of O. dubium EO as a seed protectant against bean and tomato seed-borne bacterial pathogens.

Keywords:

antibacterial, bean, essential oil, Origanum dubium, seed-borne bacteria, tomato

Ahmad, A., Khan, A., Akhtar, F., Yousuf, S., Xess, I., Khan L.A., Manzoor, N. (2011). Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur. J. Clin. Microbiol. Infect Dis., 30, 41–50.

Alagawany, M., El-Hack, M.E.A., Farag, M.R., Tiwari, R., Dhama, K. (2015). Biological effects and modes of action of carvacrol in animal and poultry production and health. A review. Adv. Anim. Vet. Sci., 3(2), 73–84.

Aligiannis, N., Kalpoutzakis, E., Mitaku S., Chinou, I.B. (2001). Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem., 49, 4168–4170.

Andrade, B.F.M.T., Barbosa, L.N., Probst I., Júnior, A.F. (2014). Antimicrobial activity of essential oils. J. Essent. Oil Res., 26(1), 34–40.

Baser, K.H., (2008). Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr. Pharm. Des., 14(29), 3106–3119.

Baser, K.H.C., Kirimer, N., Tumen, G. (1993). Composition of the essential oil of Origanum majorana L. from Turkey. J. Essent. Oil Res., 5, 577–579.

Basim, E., Basim, H. (2013). Antibacterial activity of Turkish endemic sığla (Liquidambar orientalis Mill. var. orientalis) storax against agricultural plant pathogenic bacteria and its use as a seed protectant. J. Food Agric. Environ., 11(3), 2447–2450.

Basim, E., Basim, H. (2004). Evaluation of antibacterial activity of essential oil of Rosa damascena on Erwinia amylovora. Phytoparasitica, 32(4), 409–412.

Basim, H., Yegen, O., Zeller, W. (2000). Antibacterial effect of essential oil of Thymbra spicata L. var. spicata on some plant pathogenic bacteria. J. Plant Dis. Prot., 107, 279–284.

Betoni, J.E.C., Mantovani, R.P., Barbosa, L.N., Di Stasi, L.C., Fernandes, A.J. (2006). Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases. Mem. Inst. Oswaldo Cruz., 4, 387–390.

Bolkan, H.A., Reinert, W.R. (1994). Developing and implementing IPM strategies to assist farmers: an industry approach. Plant Dis., 78, 545–550.

Diamond, A.E., Horsfall, J.G., Heuberger J.W., Stoddard, E.M. (1941). Role of the dosage-response curve in the evaluation of fungicides. Conn. Agric. Exp. Stn. Bull., 451, 635–667.

Hirano, S.S. Upper, C.D. (1983). Ecology and epidemiology of foliar bacterial plant pathogens. Annu. Rev. Phytopathol., 21, 243–270.

ISTA (1996). International rules for seed testing. Rules 1996. Seed Sci. Technol., 24, 155–180.

Karioti, A., Vrahimi-Hadjilouca, T., Droushiotis, D., Rancic, A., Hadjipavlou–Litina D.S., Skaltsa, H. (2006). Analysis of the essential oil of Origanum dubium growing wild in Cyprus. Investigation of its antioxidant capacity and antimicrobial activity. Planta Med., 72, 1330–1334.

Koparal, A.T., Zeytinoglu, M. (2003). Effects of carvacrol on a human non-small cell lung cancer (NSCLC) cell line, A549. Cytotechnology, 43, 149–154.

Lukas, B., Samuel, R., Novak, J. (2010). Oregano or Marjoram the enzyme γ-terpinene synthase affects chemotype formation in the genus Origanum. Israel J. Plant Sci., 58, 211–220.

McGimpsey, J.A., Douglas, M.H. (1994). Seasonal variation in essential oil yield and composition from naturalized Thymus vulgaris L. in New Zealand. Flavour Frag., 9, 347–352.

Nguefack, J., Wulff, G.E., Dongmo, J.B.L., Fouelefack, F.R., Fotio, D., Mbo, J., Torp., J. (2013). Effect of plant extracts and an essential oil on the control of brown spot disease, tillering, number of panicles and yield increase in rice. Eur. J. Plant Pathol., 137, 871–882.

Nostro, A., Papalia, T. (2012). Antimicrobial activity of carvacrol: current progress and future prospects. Recent Pat. Antiinfect. Drug Discov., 7, 28–35.

Ozcan, M., Erkmen, O. (2001). Antimicrobial activity of the essential oils of Turkish plant spices. Eur. Food Res. Technol., 212, 658–660.

Salgueiro, L.R., Vila, R., Tomi, F., Figueiredo, A.C., Barroso, J.G., Canigueral, S. (1977). Variability of essential oils of Thymus caespititius from Portugal. Phytochemistry, 45, 307–311.

Sarer, E., Scheffer, J.J.C., Svedsen, A.B. (1982). Monoter-penes in the essential oil of Origanum majorana. Planta Med., 46, 236–239.

Sivropoulou, A., Papanikolaou, E., Nikolanou, C., Kokkini, S., Lanaras T., Arsenakis, M. (1996). Antimicrobial and cytotoxic activities of Origanum essential oils. J. Agric. Food Chem., 44, 1202–1205.

Stefan, M., Zamfirache, M., Padurariu, C., Truta, E., Gostin, I. (2013). The composition and antibacterial activity of essential oils in three Ocimum species growing in Romania. Cent. Eur. J. Biol., 8, 600–608.

Suntres, Z.E., Coccimiglio, J., Alipour, M. (2015). The bioactivity and toxicological actions of carvacrol. Crit. Rev. Food Sci. Nutr., 55(3), 304–318.

Tang, X., Chen, S., Wang, L. (2011). Purification and identification of carvacrol from the root of Stellera chamaejasme and research on its insecticidal activity. Nat. Prod. Res., 25, 320–325.

Turgut, K., Tutuncu, B., Ozyigit, Y., Ucar, E. (2016). Clone selection for high quality types of oregano (Origanum dubium Boiss.). Julius-Kühn-Archiv, 453, 164–166.

Turgut, K., Ozyigit, Y., Tutuncu B., Sozmen, E.U. (2017). Agronomic and chemical performance of selected Origanum dubium Boiss. clones for industrial use. Turk. J. Agric. For., 41, 272–277.

Vokou, S., Kokkini, S., Bessiere, J.M. (1993). Geographic variation of Greek oregano (Origanum vulgare ssp. hirtum) essential oils. Biochem. Syst. Ecol., 21, 287–295.
Download

Published
2019-06-18



Hüseyin Basim 
Plant Protection Department, Akdeniz University, Antalya, Turkey
Kenan Turgut 
Department of Field Crops, Akdeniz University, Antalya, Turkey
Begum Kaplan 
Department of Field Crops, Akdeniz University, Antalya, Turkey
Esin Basim 
Department of Organic Agriculture, Akdeniz University, Antalya, Turkey
Ali Turgut 
Plant Protection Department, Akdeniz University, Antalya, Turkey



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)