Morphological differences between lake and river populations of roach – Rutilus rutilus (L.)

Jacek Rechulicz

Department of Landscape Ecology and Nature Conservation, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin

Marcin Kolejko

Department of Landscape Ecology and Nature Conservation, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin



Abstrakt

Four populations (two from rivers and two from lakes) of roach Rutilus rutilus (L.) were tested for a variation of morphological features depending on the given habitat. 23 biometric
and 11 meristic variables were analysed. The compared fish populations showed little variability as regards the meristic features. Lake roaches were characterised by higher values of biometric characteristics than the river populations. The habitat affected the selected biometric variables. The following features: eye diameter, length of the caudal peduncle and head depth were the least changeable. The greatest differences between the fish populations were identified in the case of head and body width. River roaches had higher fins and a greater predorsal length. The lake roach populations were showed greater pectoral – pelvic fin distances. Moreover, the fish from lakes were characterized by lower variability of countable traits as compared with the river fish.

Słowa kluczowe:

fish morphology, fish biometry, lake populations, river populations, roach, Rutilus rutilus (L.)

Appelberg M., 2000. Swedish standard methods for sampling freshwater fish with multi-mesh gillnets. Fiskeriverket Information, 1, 27.
Brabrand A., 1985. Food of roach (Rutilus rutilus) and ide (Leusiscus idus): significance of diet shift for interspecific competition in omnivorous fishes. Oecologia 66, 461–467.
Brinsmead J., Fox M.G., 2002. Morphological variation between lake- and stream-dwelling rock bass and pumpkinseed populations. J. Fish Biol. 61, 1619–1638.
Brylińska M., 1991. Ryby słodkowodne Polski. PWN Warszawa.
CENT document, 2005. Water quality – Sampling of fish with multi-mesh gillnets. EN 14757:2005. PN-EN 14757:205. Jakość wody – Pobieranie próbek ryb wielooczkowymi sieciami.
Claytor R.R., 1991. Continental and ecological variance components of European and North American Atlantic salmon (SuZmo suZur) phenotypes. Biol. J. Linn. Soc., 44, 203–229.
Czerniejewski P., Keszka S., 2007. Ecomorphological variability of vendace, Coregonus albula (L.), in selected lakes of West Pomerania. Acta Sci. Pol., Piscaria, 6 (2), 3–14.
Dynes J., Magnan P., Bernatchez L., Rodriguez M.A., 1999. Genetic and morphological variation between two forms of lacustrine brook charr. J. Fish. Biol. 54, 955–972.
Ehlinger T.J., 1990. Habitat choice and phenotype-limited feeding efficiency in Bluegill: individual differences and trophic polymorphism. Ecology, 71 (3), 886–896.
Harasimiuk M., Michalczyk Z., Turczyński M., 1998. Jeziora Łęczyńsko–Włodawskie. Monografia przyrodnicza. UMCS, PIOŚ Lublin.
Hickley P., 1990. Electric fishing in practice, In: Cowx I.G., Lamarque P. (eds.) Fishing with electricity – Applications in Freshwater Fisheries Management. Fishing News Books. Blackwell
Scientific Publications. Oxford. 176–187.
Horppila J., Kairesalo T., 1990. A fading recovery: the role of roach (Rutilus rutilus L.) in maintaining high phytoplankton productivity and biomass in Lake Vesijärvi, southern Finland. Hydrobiol. 200/201, 153–165.
Horppila J., Malinen T., Peltonen H., 1996. Density and habitat shifts of a roach (Rutilus rutilus) stock assessed within one season by cohort analysis, depletion methods and echosounding.
Fish. Res. 28 (2), 151 –161.
Imre I., McLaughlin R.L., Noakes D.L.G., 2002. Phenotypic plasticity in brook charr: changes in caudal fin induced by water flow. J. Fish. Biol., 61, 1171–1181.
Kornijów R., Pęczuła W., Lorens B., Ligęza S., Rechulicz J., Kowalczyk-Pecka D., 2002a. Shallow Polesie lakes from the view point of alternative stable states theory. Acta Agrophys. 68, 61–72.
Kornijów R., Smal H., Pęczuła W., Lorens B., Rechulicz J., Sugier P., Paleolog-Demetraki A., Tarkowska-Kukuryk M., Ligęza S., Kowalczyk D., Szafran K., Halkiewicz A., 2002b. Hypertrophication
of Lake Syczyńskie (Eastern Poland). Limnol. Rev. 2, 209–215.
McLaughlin R.L., Grant J.W.A., 1994. Morphological and behavioral differences among recentlyemerged brook charr, Salvelinus fontinalis, foraging in slow- vs. fast-running water. Environ.
Biol. Fish. 39, 289–300.
Nakamura T., 2003. Meristic and morphometric variations in fluvial Japanese charr between river systems and among tributaries of a river system. Environ. Biol. Fish. 66, 133–141.
Neat F.C., Lengkeek W., Westerbeek E.P., Laarhoven B., Videler J.J., 2003. Behavioural and morphological differences between lake and river populations of Salaria fluviatilis. J. Fish.
Biol. 63, 374–387.
Pakkasmaa S., Piironen J., 2001. Morphological differentiation among local trout (Salmo truttu) populations. Biol. J. Linn. Soc., 72, 231–239.
Peltonen H., RuuhijaÈrvi J., Malinen T., Horppila J., 1999. Estimation of roach (Rutilus rutilus L.) and smelt (Osmeruseperlanus L.) stocks with virtual population analysis, hydroacoustics and
gillnet CPUE. Fish. Res., 44, 25–36.
Psuty I., Draganik B., Blady W., 2007. Gillnet selectivity to roach, Rutilus rutilus, from the Szczecin Lagoon, Poland. Acta Ichth. Pisc. 37 (1), 17–23.
Raport o stanie środowiska województwa lubelskiego 2005 r. online available: http://www.wios.-lublin.pl (access: 23.06.2009).
Sacotte S., Magnan P., 2006. Inherited differences in foraging behaviour in the offspring of two forms of lacustrine brook charr. Evol. Ecol. Res. 8, 843–857.
Schiemer F., Wieser W., 1992. Epilogue: food and feedeing, ecomorphology, energy assimilation and conversion in cyprinids. Environ. Biol. Fish. 33, 223–227.
Solem Ø., Berg O.K., Kjosnes A.J., 2006. Inter- and intra-population morphological differences between wild and farmed Atlantic salmon juveniles. J. Fish. Biol. 69, 1466–1481.
Swain D.P., Riddell B.E., Murray C.B., 1991. Morphological Differences between Hatchery and Wild Populations of Coho Salmon (Oncorhynchus kisutch): Environmental versus Genetic
Origin. Can. J. Fish. Aquat. Sci. 48, 1783–1791.
Szczyglińska A. 1980a. Analiza dwóch populacji okonia Perca fluviatilis (L.) i dwóch populacji płoci Rutilus rutilus (L.) pochodzących ze zbiorników o różnej termice wód. Zesz. Nauk.
ART Olsztyn. 10, 249–259.
Szczyglińska A., 1980b. Cechy merystyczne płoci i okonia pochodzących ze zbiornika naturalnego i termicznie zanieczyszczonego. Zesz. Nauk. ART Olsztyn, 10, 263–278.
Tarvainen M., Sarvala J., Helminen H., 2002. The role of phosphorus release by roach [Rutilus rutilus (L.)] in the water quality changes of a biomanipulated lake. Fresh. Biol. 47, 2325–2336.
Taylor E.B., 1986. Differences in morphology between wild and hatchery populations of juvenile coho salmon. Progress. Fish-Culturist. 48, 171–176.
Von Cramon-Taubadel N., Ling E.N., Cotter D., Wilkins N.P., 2005. Determination of body shape variation in Irish hatchery-reared and wild Atlantic salmon. J. Fish. Biol. 66, 1471–1482.
Zalewski M., Suszycka E., 1980. Attempt at establishing the effect of water pollution on the legibility of scale of the roach (Rutilus rutilus L.). Acta Hydrobiol. 22 (3), 299–311.

Opublikowane
2012-03-31



Jacek Rechulicz 
Department of Landscape Ecology and Nature Conservation, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin
Marcin Kolejko 
Department of Landscape Ecology and Nature Conservation, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin



Licencja

Od 2022 r. artykuły są udostępniane na zasadach licencji Creative Commons uznanie autorstwa 4.0 międzynarodowa (CC BY 4.0). Artykuły opublikowane przed 2022 r. są dostępne na zasadach licencji Creative Commons uznanie autorstwa – użycie niekomercyjne – bez utworów zależnych 4.0 międzynarodowa  (CC BY-NC-ND 4.0).

Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej, nie jest rozpatrywany do publikacji w innych wydawnictwach.

Autor podpisuje oświadczenie o oryginalności dzieła i wkładzie poszczególnych osób.


Inne teksty tego samego autora