Abstract
The paper presents the effect of synthetic and natural prebiotics and a synbiotic on the lipid metabolism of snails (Cepaea nemoralis) fed in laboratory conditions. The diet of the snails was supplemented with synthetic inulin, Jerusalem artichoke and a commercial synbiotic in various configurations. The results indicate that the dietary supplements caused differences in the production of fatty acids by the snails. In all of the experimental groups an increase in the quantity of unsaturated fatty acids was observed with respect to the control, with the highest level of UFA noted in the case of supplementation with the synbiotic together with inulin. The results indicate the usefulness of simultaneous application of pre- and synbiotics in commercial farming of taxa belonging to the Helicidae in order to improve the health-promoting value of snail meat.
References
Aumiller T., Mosenthin R., Weiss E., 2015. Potential of cereal grains and grain legumesin modulating pigs' intestinal microbiota – a review. Livest. Sci. 172, 16–32.
Bligh E.G., Dyer W.J., 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37, 911–917.
Canibe N., Jensen B.B., 2012. Fermented liquid feed.Microbial and nutritional aspects and impact on enteric diseases in pigs. Anim. Feed Sci. Tech. 173, 17–40.
Chuang Y., Tseng S., Teng L., Ho Y., Hsueh P., 2006. Emergence of cefotaxime resistance in Citrobacter freundii causing necrotizing fasciitis and osteomyelitis. J. Infect. 53, 161–163.
Cieślik E., Gębusia A., 2010. Topinambur (Helianthus tuberosus L.) – bulwa o właściwościach prozdrowotnych. Post. Nauk Rol. 3, 91–103.
Denton M., 2007. Enterobacteriaceae. Int. J. Antimicrob. Ag. 29, suppl. 3, 9–22.
Ewaschuck J.B., Madsen K.L., 2009. Mechanisms of probiotic effects: a review. Funct. Food Rev.
1, 29–41.
Gibson R., Roberfroid M., 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 140–1412.
Górecka D., Konieczny P., Stachowiak J., Korczak J., Tarkowska K., 2005. Właściwości funkcjonalne inuliny i jej zdolność w zakresie sorpcji wybranych składników mineralnych. Bromatol. Chem. Toksykol. 37, supl. 423–427.
Jørgensen H., Sholly D, Pedersen A. Ø., Canibe N., Knudsen K.E.B., 2010. Fermentation of cereals. Influence on digestibility of nutrients in growing pigs. Livest. Sci. 134, 56–58.
Kraler M., Schedleb K., Domig K.J., Heined D., Michlmayra H., Kneifel W., 2014. Effects of fermented and extruded wheat bran on total tractapparent digestibility of nutrients, minerals and energy in growing pigs. Anim. Feed Sci. Tech. 197, 121–129.
Laskowski R., Hopkin S.P., 1996. Accumulation of Zn, Cu, Pb and Cd in the garden snail (Helix aspersa): implications for predators. Environ. Pollut. 91, 289–297.
Matsuura H., Yoshihara T., Ichihara A., 1993. Four new polyacetylenic glucosides, methyl beta-Dglucopyranosyl helianthenate CF, from Jerusalem artichoke Helianthus tuberosus L.). Biosci. Biotech. Biochem. 57(9), 1492–1498.
Metzler B.U., Vahjen W., Baumgartel T., Rodehutscord M., Mosenthin R., 2009. Changes in bacterial populations in the ileum of pigs fed low-phosphorus diets supplemented with different sources of fermentable carbohydrates. Anim. Feed Sci. Tech. 148, 68–89.
Paterson D.L. 2006. Resistance in Gram-Negative Bacteria: Enterobacteriaceae. Am. J. Med. 119, 6A, 20–28.
Pepperell C., Kus J. V., Gardam M.A., Humar A. and Burrows L.L., 2002. Low-virulence Citrobacter species encode resistance to multiple antimicrobials. Antimicrob. Agents Chemother. 46, 11, 3555–3560.
Rossi R., Pastorelli G., Cannata S., Corino C., 2010. Recent advances in the use of fatty acids as supplements in pig diets: A review. Anim. Feed Sci. Tech. 162, 1–11.
Scholz-Ahrens K.E., Schrezenmeir J., 2007. Inulin and oligofructose and mineral metabolism: the evidence from animal trials. J. Nutr. 137 (11), 2513–2523.
Sekhon B.S., Jairath S., 2010. Prebiotics, probiotics and synbiotics: an overview. J. Pharm. Educ. Res. 1 (2), 13–36.
Downloads
Download data is not yet available.