Skip to main navigation menu Skip to main content Skip to site footer

Vol. 35 No. 4 (2017)

Articles

Relationship between CIE colour characteristics and mineral composition in bee honey

DOI: https://doi.org/10.24326/jasbbx.2017.4.2
Submitted: January 29, 2019
Published: 2017-12-11

Abstract

The study aim was the examination whether the correlation between colour characteristics of CIE L*a*b* system and mineral composition can be established in bee honeys. The study was conducted on 34 honeys of different origin, including acacia (n = 7), deciduous honeydew honey (n = 7), raspberry (n = 6), multifloral (n = 9), and rape (n = 5) samples, collected from apiaries located in Lublin region in 2016 season. The concentration of 7 minerals (K, Na, Ca, Mg, Fe, Zn and Mn) and colour characteristics according to CIE L*a*b* were determined. The negative Spearman’s correlation between all minerals and lightness L* (–0.25 £ rS £ –0.62) or hue h° (–0.36 £ rS £ –0.71), but positive with redness a* (0.40 £ rS £ 0.63) were found. With an increase of L* significantly (p £ 0.005) decreasing of K and Mn concentrations (R2 = 0.84 and R2 = 0.89, respectively), as well the total of minerals (R2 = 0.85) were stated. Moreover, such negative relationship was found for hue (h°) (0.86 ≤ R2 ≤ 0.91), but reverse dependence (i.e. positive) was observed for redness (a*) (0.96 ≤ R2 ≤ 0.99). The results of these preliminary surveys, indicate the potential use of selected characteristics of CIE L*a*b* colour system for indirect determination of certain minerals in honey.

References

Altun S.K., Dinç H., Paksoy N., Temamogullari F.K., Savrunlu M., 2017. Analyses of Mineral Content and Heavy Metal of Honey Samples from South and East Region of Turkey by Using ICP-MS. Int. J. Anal. Chem., article ID 6391454, 1–6.

Bettar I., González-Miret M.L., Hernanz D., Marconi A., Hereida F.J., Terrab A., 2015. Characterisation of Moroccan Spurge (Euphorbia) honeys by their physicochemical characteristics, mineral contents and colour. Arab. J. Chem., http://dx.doi.org/10.1016/j.arabjc.2015.01.003.

Dell Inc., 2016. Dell Statistica (data analysis software system), version 13.software.dell.com.

Formicki G., Greń A., Stawarz R., Zyśk B., Gał A., 2013. Metal Content in Honey, Propolis, Wax, and Bee Pollen and Implications for Metal Pollution Monitoring. Pol. J. Environ. Stud. 22(1), 99–106.

Giemza M., 2004. Badanie preferencji konsumenckich cech jakościowych miodów naturalnych. Zesz. Nauk. Akad. Ekon. Krak. 653, 13–27.

González-Miret M.L., Terrab A., Hernanez D., Fernández-Recamales M.A., Hereida F.J., 2005. Multivariate correlation between color and mineral composition of honeys and by their botanical origin. J. Agric. Food Chem. 53, 2574–2580.

Grembecka M., Hendożko E., Szefer P., 2007. Zawartość żelaza i magnezu w wybranych gatunkach miodów pszczelich. Bromat. Chem. Toksykol. 40, 325–328.

Kędzierska-Matysek M., Wolanciuk A., Florek M., Skałecki P., Litwińczuk A., 2017. Hydroxymetylfurfural content, diastase activity and colour of multifloral honeys in relation to origin and storage time/ Zawartość hydroksymetylfurfuralu, aktywność diastazy i barwa wielokwiatowych miodów pszczelich w zależności od pochodzenia i czasu przechowywania. J. Cent. Eur. Agr. 18(3), 657–668.

Kędzierska-Matysek M., Florek M., Wolanciuk A., Skałecki P., 2016a. Effect of freezing and room temperatures storage for 18 months on quality of raw rapeseed honey (Brassica napus). J. Food Sci. Tech. Mys. 53(8), 3349–3355.

Kędzierska-Matysek M., Florek M., Wolanciuk A., Skałecki P., Litwińczuk A., 2016b. Characterisation of viscosity, colour, 5-hydroxymethylfurfural content and diastase activity in raw rape honey (Brassica napus) at different temperatures. J. Food Sci. Tech. Mys. 53(4), 2092–2098.

Kuś P.M., Congiu F., Teper D., Sroka Z., Jerković I., Tuberoso C.I.G., 2014. Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT-Food Sci. Technol. 55, 124–130.

Majewska E., 2009. Porównanie wybranych właściwości miodów pszczelich jasnych i ciemnych. Nauka Przyr. Technol. 3(4), #143.

Majewska E, Kowalska J., 2011. Badanie korelacji pomiędzy przewodnością elektryczną i zawartością popiołu w wybranych miodach pszczelich. Acta Agrophys. 17(2), 369–376.

Pisani A., Protano G., Riccobono F., 2008. Minor and trace elements in different honey types produced in Siena County (Italy). Food Chem. 107(4), 1553–1560.

PN-88/A-77626. 1988. Miód pszczeli. Alfa, Warszawa.

Popek S., 2001. Studium identyfikacji miodów odmianowych i metodologii oceny właściwości fizykochemicznych determinujących ich jakość. Zesz. Nauk., Monografie 147, Wyd. Akad. Ekon. w Krakowie.

Przybyłowski P., Wilczyńska A. 2001. Honey as an environmental marker. Food Chem. 74, 289–291.

da Silva P.M., Gauche C., Gonzaga LV., Costa A.C.O, Fett R., 2016. Honey: Chemical composition, stability and authenticity. Food Chem. 196, 309–323.

Visquert M., Vargas M., Escriche I., 2014. Effect of postharvest storage conditions on the colour and freshness parameters of raw honey. Int. J. Food Sci. Technol. 49, 181–187.

Wilczyńska A., 2010. Zmiany barwy, aktywności antyoksydacyjnej oraz zawartości HMF w miodach pszczelich zachodzące pod wpływem ogrzewania. Pr. Mat. Wydz. Zarz. Uniw. Gdańsk. 2(2), 291–298.

Wilczyńska A., Przybyłowski P., Stasiuk E., 2004. Zawartość żelaza w miodach pszczelich. Rocz. PZH 55, supl., 81–84.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >>