Skip to main navigation menu Skip to main content Skip to site footer

Vol. 40 No. 2 (2024)

Articles

Assessment of indirect impact of LW Bogdanka SA on peatland ecosystems: the application dimension of the analyses of the physico-chemical and microbiological analyses of waters

DOI: https://doi.org/10.24326/jasbb.2024.5487
Submitted: January 21, 2025
Published: 30.06.2025

Abstract

Analysis of the physicochemical properties of a habitat, together with data on the ecological requirements of individual organism groups, makes it possible to determine the current state of the environment with high precision. Testate amoebae thrive in biogenic sediments, and their analysis thus provides an opportunity to reconstruct the developmental history of a peatland, including any potential impacts of nearby mining operations. The aim of this study was to assess the influence of the LW Bogdanka SA coal mine on the peatland ecosystems of Polesie National Park. Monthly water samples were collected at two peatlands within the Park from May through November. At each sampling event, we measured the water’s physical and chemical parameters and examined the qualitative and quantitative structure of the testate-amoeba community. Our results indicate that testate amoebae exhibit greater taxonomic diversity, abundance, and biomass in the peatland adjacent to Lake Moszne, where water-quality parameters – particularly dissolved oxygen levels and concentrations of bioavailable nutrients – remain relatively stable. In contrast, the Orłowskie Peatland shows clearer signs of anthropogenic influence: elevated nutrient concentrations here correspond with both quantitative and qualitative shifts in the testate-amoeba assemblage.

References

  1. Adamec L., 2011. The smallest but fastest. Ecophysiological characteristics of traps of aquatic carnivorous Utricularia. Plant Signal Behav. 6(5), 640–646. https://doi.org/10.4161/psb.6.5.14980
  2. Booth R.K., Lamentowicz M., Charman D. 2010. Preparation and analysis of testate amoebae in peatland paleoenvironmental studies. Mires Peat 7, 1–7.
  3. Evans C.D., Peacoc M., Baird A., Artz R., Burden A., Callaghan N., Chapman P., Cooper H., Coyle M., Craig E, et al., 2021. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552. https://doi.org/10.1038/s41586-021-03523-1
  4. Geisen S., Laros I., Vizcaino A., Bonkowski M., De Groot G.A., 2015. Not all are free-living: high-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa. Mol. Ecol. 24, 4556–4569. https://doi.org/10.1111/mec.13238
  5. Gilbert D., Amblard C., Bourdier G., Francez A.J., 1998. The microbial loop at the surface of a peatland: structure, functioning and impact of nutrients inputs. Microb. Ecol. 35, 89–93. https://doi.org/10.1007/s002489900062
  6. Golterman H.L., 1969. Methods for chemical analysis of fresh waters. IBP Handbook No. 8. Blackwell Scientific Publications, Oxford.
  7. Jassey V.E., Shimano S., Dupuy C., Toussaint M.L., Gilbert D., 2011. Characterizing the feeding habits on the testate amoebae Hyalosphenia papilio and Nebela tincta along narrow „fen-bog” gradient using digestive vacuole content and 13C and 15N isotopic analyses. Protist 163, 451–464. https://doi.org/10.1016/j.protis.2011.07.006
  8. Lamarre A., Magnan G., Garneau M., Boucher E., 2013. A testate amoeba-based transfer function for paleohydrological reconstruction from boreal and subarctic peatlands in northeastern Canada. Quat. Int. 306, 88–96. https://doi.org/10.1016/j.quaint.2013.05.054
  9. Lamentowicz M., Van der Knaap P., Lamentowicz Ł., Van Leeuwen J.F.N., Mitchell E.A.D., Goslar T., Kamenik C. 2010. A near-annual palaeohydrological study based on testate amoebae from an Alpine mire: surface wetness and the role of climate during the instrumental period. J. Quat. Sci. 25, 190–202. https://doi.org/10.1002/jqs.1295
  10. Leifeld J., Wüst-Galley C., Page S., 2019. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Chang. 9, 945–947. https://doi.org/10.1038/s41558-019-0615-5
  11. Mieczan T., Adamczuk M., Tarkowska-Kukuryk M., Pęczuł W., Pawlik-Skowrońska B., 2017. Effects of experimental addition of nitrogen and phosphorus on microbial and metazoan communities in a peatbog. Eur. J. Protistol. 59, 50–64.
  12. Mieczan T., Tarkowska-Kukuryk M., Adamczuk M., Pęczuła W., Demetraki-Paleolog A., Niedźwiecki M., 2015. Research of different types of peatbogs: relationschips of biocenosis structures and physico-chemical parameters. Pol. J. Environ. Stud. 1, 191–198.
  13. Mitchell E.A.D., Charman D.J., Warner B.G., 2008. Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodiv. Conserv. 17, 2115–2137. https://doi.org/10.1007/s10531-007-9221-3
  14. Obroślak R., Mazur A., Jóźwiakowski K., Dorozhynsky O., Grzywna A., Rybicki R., Nieścioruk K., Król Ż., Gabryszuk J., Gajewska M., 2017. Using terrestrial laser scanning in inventorying of a hybrid constructed wetland system. Water Sci. Technol. 76, 2664–2671. https://doi.org/10.2166/wst.2017.436
  15. Ogólnopolskie Towarzystwo Ochrony Ptaków (OTOP), 2024. Podręcznik renaturyzacji i ponownego nawadniania torfowisk. OTOP, Marki. https://otop.org.pl/2024/11/22/podrecznik-renaturyzacji-i-ponownego-nawadniania-torfowisk/
  16. Payne R., Charman D.J., Matthews S., Eastwood W., 2008. Testate amoebae as palaeoclimate proxies in Sürmene Ağaçbaşi Yaylasi peatland (Northeast Turkey). Wetlands 28, 311–323. https://doi.org/10.1672/07-42.1
  17. Płachno B.J., Łukaszek M., Wołowski K., Adamec L., Stolarczyk P., 2012. Aging of Utricularia traps and variability of microorganisms associated with that micro habitat. Aquat. Bot. 97, 44–48. https://doi.org/10.1016/j.aquabot.2011.11.003
  18. Swindles G.T., Charman D.J., Roe H.M., Gheorghiu D.M., 2009. Towards reconstructing hydroclimate using testate amoebae: development of transfer functions based on surface samples from Romania. Eur. J. Protistol. 45, 191–200. https://doi.org/10.1016/j.ejop.2008.11.001
  19. Utermöhl H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. T. 9. Schweizerbart, 1–38. https://doi.org/10.1080/05384680.1958.11904091

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.