Abstract
The paper presents results of a study on the impact of low molecular organic acids on phytotoxicity and efficiency of cadmium uptake and translocation by sunflower plants (Helianthus annuus L.). The cadmium-contaminated substrate (100 mg Cd · kg–1) was treated with solutions of citric or oxalic acid at concentrations of 25 or 50 mmol · dm–3. It was found that the presence of cadmium ions in the substrate caused a slight reduction in the biomass of shoots, but their elongation growth was strongly limited. There was no significant effect of the applied cadmium dose on the content of photosynthetic pigments in the leaves. Application of organic acids to the contaminated substrate did not usually have a negative effect the growth of plants and the level of photosynthetic pigments, but resulted in a significant reduction of cadmium content in shoots, especially under the influence of a higher dose of acids used. It was shown that oxalic acid was more effective in reducing the translocation of cadmium to the aboveground parts of sunflower than citric acid.
References
Adesodun J.K., Atayese M.O., Agbaje T.A., Osadiaye B.A., Mafe O.F., Soretire A.A., 2010. Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water Air Soil Pollut. 207, 195–201.
Baran A., Jasiewicz C., Klimek A., 2008. Reakcja roślin na toksyczną zawartość cynku i kadmu w glebie. Proc. ECOpole 2(2), 417 – 422.
Baranowska-Morek A., 2003. Roślinne mechanizmy tolerancji na toksyczne działanie metali ciężkich. Kosmos 52, 283–298.
Chen Y.X., Lin Q., Luo Y.M., He Y.F., Zhen S.J., Yu Y.L., Tian G.M., Wong M.H., 2003. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 50, 807–811.
Duarte B., Delgado M., Cacador I., 2007. The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides. Chemosphere 69, 836–840.
Gill S.S., Tuteja N., 2011. Cadmium stress tolerance in crop plants – probing the role of sulphur. Plant Signal. Behav. 6, 215–222.
Hawrylak-Nowak B., Dresler S., Matraszek R., 2015. Exogenous malic and acetic acids reduce cadmium phytotoxicity and enhance cadmium accumulation in roots of sunflower plants. Plant Physiol. Biochem. 94, 225–234.
Kabata-Pendias A., Mukherjee A.B., 2007. Trace Elements from Soil to Human. Springer, Berlin–Heidelberg.
Lichtenthaler H.K., Wellburn A.R., 1983. Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 603, 591–592.
Myśliwa-Kurdziel B., Strzałka K., 2002. Influence of metals on biosynthesis of photosynthetic pigments. W: M.N.V. Prasad, K. Strzałka (red.), Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Springer, Dordrecht, 201–227.
Niu Z.X., Li X.D., Sun L.N., Sun T.H., 2012. Changes of three organic acids in the process of Cd and Pb phytoextraction by Helianthus annuus L. Plant Soil Environ. 58, 487–494.
Olko A., 2009. Fizjologiczne aspekty tolerancji roślin na metale ciężkie. Kosmos 58, 221–228.
Ostrowska P., 2008. Kadm – występowanie, źródła zanieczyszczeń, metody recyklingu. Gosp. Surowc. Min. 24, 255–260.
Pinot F., Kreps S., Bachelet M., Hainaut P., Bakonyi M., Polla B., 2000. Cadmium in the environment: sources, mechanisms of biotoxicity, and biomarkers. Rev. Environ. Health 15, 299–323.
Szulc P.M., Kobierski M., 2010. Przydatność wydmuchrzycy pontyjskiej (Elymus elongatus var. ponticus) w oczyszczaniu gleb zanieczyszczonych miedzią, ołowiem i kadmem. Ochr. Środ. Zasob. Natur. 43, 71–79.
Turgut C., Pele M.K., Cutright T.J., 2004. The effect of EDTA and citric acid on phytoremediation of Cd, Cr and Ni from soil using Helianthus annuus. Environ. Pollut. 131, 147–154.
Wang S., Dong Q., Wang Z., 2017. Differential effects of citric acid on cadmium uptake and accumulation between tall fescue and Kentucky bluegrass. Ecotox. Environ. Saf. 145,
200–206.
Downloads
Download data is not yet available.