Abstract
The field experiment (2011–2013) was focused on the assessment of the impact of
varied plant density (20, 40, 60, 80, and 100 plants·m-2) and row spacing (25 and 40 cm) on the
size and quality of seed yields in two pot marigold cultivars. The morphological traits of pot marigold
plants and elements of the yield structure were correlated primarily with the weather conditions
prevailing over the study years, plant density, and varietal properties, but they only slightly
depended on row spacing. The highest seed yield (1895 kg·ha-1) and crude fat yield (400 kg·ha-1)
were obtained in 2013 characterised by the highest precipitation rates during the period of intensive
plant growth, while the lowest values were noted in 2012 (1515 kg·ha-1 seeds and 297 kg·ha-1
fat), in which the lowest precipitation values during the vegetation season were reported. Increasing
plant density contributed to an increase in the plant height and a simultaneous decline in the
number of floral heads per plant and in the thousand-seed weight. The highest seed yields from
both pot marigold cultivars were achieved at a density of 60 plants·m-2. The content and quality of
fat were mainly determined by the weather conditions during the seed formation period. Favourable
water conditions combined with moderate temperatures promoted the accumulation of crude
fat and linolenic acid isomers (CLNA). The quality of the seeds differed between the studied cultivars:
‘Orange King’ seeds were characterised by a higher level of fat (21.1%), whereas the oil
from the ‘Tokaj’ cultivar had a higher proportion of CLNA (49.97%). Row spacing and plant
density did not affect the chemical composition of the seeds.
References
- Angelini L.G., Moscheni E., Colonna G., Belloni P., Bonari E., 1997. Variation in agronomic characteristics and seed oil composition of new oilseed crops in central Italy. Ind. Crop. Prod. 6, 313–323.
- AOCS (American Oil Chemists Society), 1997. Preparation of methyl esters of fatty acids. 452 Official Method Ce 2–66. Champaign (IL): AOCS Press.
- Białek A., Teryks M., Tokarz A., 2014. Sprzężone trieny kwasu linolenowego (conjugated linolenic acid – CLnA, super CLA) – źródła i działanie biologiczne. Post. Hig. Med. Dosw. 68, 1238–1250.
- Biermann U., Butte W., Holtgrefe R., Feder W., Metzger J.O., 2010. Esters of calendula oil and tung oil as reactive diluents for alkyd resins. Eur. J. Lipid. Sci. Tech. 112, 103–109.
- Cahoon E.B., Ripp K.G., Hall S.E., Kinney A.J., 2001. Formation of conjugated ∆8, ∆10-double bonds by ∆12-oleic-acid desaturase-related enzymes. Biosynthetic origin of calendic acid. J. Biol. Chem. 276, 2637–2643.
- Crnobarac J., Jaćimović G., Marinković B., Mircov V.D., Mrda J., Babić M., 2009. Dynamics of pot marigold yield formation depended by varieties and row distance. Nat. Prod. Commun. 4(1), 35–38.
- Cromack H.T.H., Smith J.M., 1998. Calendula officinalis – production potential and crop agronomy in southern England. Ind. Crop. Prod. 7, 223–229.
- Dulf F.V., Pamfil D., Baciu A.D., Pintea A., 2013. Fatty acid composition of lipids in pot marigold (Calendula officinalis L.) seed genotypes. Chem. Cent. J. 7, 8.
- Fontes A.L., Pimentel L.L., Simões C.D., Gomes A.M., Rodríguez-Alcalá L.M., 2015. Evidences and perspectives in the utilization of CLNA isomers as bioactive compound in foods. Critical Rev. Food Sci. Nutr. DOI: 10.1080/10408398.2015.1063478.
- Froment M., Mastebroek D., van Gorp K., 2003. A growers manual for Calendula officinalis L. Plant Research International, Wageningen, 11.
- Janssens R.J., Vernooij W.P., 2001. Calendula officinalis: A natural source for pharmaceutical, oleochemical, and functional compounds. Inform. 12, 468–477.
- Joly R., Forcella F., Peterson D., Eklund J., 2013. Planting depth for oilseed calendula. Ind. Crop. Prod. 42, 133–136.
- Król B., 2013. Wpływ zagęszczenia roślin na plonowanie i jakość surowca nagietka lekarskiego (Calendula officinalis L.). Annales UMCS, sec. E, Agricultura 68(2), 42–49.
- Król B., Paszko T., 2017. Harvest date as a factor affecting crop yield, oil content and fatty acid composition of the seeds of calendula (Calendula officinalis L.) cultivars. Ind. Crop. Prod. 97, 242–251.
- Król B., Paszko T., Król A., 2016. Conjugated linolenic acid content in seeds of some pot marigold (Calendula officinalis L.) cultivars grown in Poland. Farmacia 64(6), 881–886.
- Li Q., Wang H., Ye S.H., Xiao S., Xie Y.P., Liu X., Wang J.H., 2013. Induction of apoptosis and inhibition of invasion in choriocarcinoma JEG-3 cells by α-calendic acid and β-calendic acid. Prostag. Leukotr. Ess. 89, 367–376.
- Martin R.J., Deo B., 2000. Effect of plant population on calendula (Calendula officinalis L.) flower production. N. Z. J. Crop Hortic. Sci. 28, 37–44.
- Mili R., Sable A.S., 2003. Effect of planting density and nitrogen levels on growth and flower production of calendula (Calendula officinalis L.). Ind. J. Hortic. 60(4), 339–403.
- Özgül-Yücel S., 2005. Determination of conjugated linolenic acid content of selected oil seeds grown in Turkey. J. Am. Oil. Chem. Soc. 82, 893–897.
- Ruiz de Clavijo E., 2005. The reproductive strategies of the heterocarpic annual Calendula arvensis (Asteraceae). Acta Oecol. 28, 119–126.
- Seghatoleslami M.J., Mousavi G.R., 2009. The effects of sowing date and plant density on seed and flower yield of pot marigold (Calendula officinalis L.). Acta Hortic. 826, 371–376.
- Shakib A., Nejad A.R., Khalighi A.H.M., 2010. Changes in seed and oil yield of Calendula officinalis L. as affected by different levels of nitrogen and plant density. Res. Crops 11(3), 728–732.
- Walisiewicz-Niedbalska W., Patkowska-Sokoła B., Gwardiak H., Szulc T., Bodkowski R., Różycki K., 2012. Potencjalne surowce do otrzymywania bioaktywnych pochodnych tłuszczowych. Przem. Chem. 91(5), 1058–1063.
Downloads
Download data is not yet available.
-
HALINA LIPIŃSKA,
TERESA WYŁUPEK,
MAŁGORZATA SOSNOWSKA,
AGNIESZKA KĘPKOWICZ,
WOJCIECH LIPIŃSKI,
EWA STAMIROWSKA-KRZACZEK,
Allelopathic properties of selected lawn cultivars of Poa pratensis and their utilization in garden compositions
,
Agronomy Science: Vol. 74 No. 4 (2019)
-
BARBARA SKIBOWSKA,
KAMILLA KUŻDOWICZ,
KATARZYNA FRANKE,
MAŁGORZATA MALICKA,
Search for genotypes resistant to Cercospora (Cercospora beticola Sacc.) in multigerm breeding materials of sugar beet
,
Agronomy Science: Vol. 73 No. 4 (2018)
-
ALI HULAIL NOAEMA,
BARBARA HELENA SAWICKA,
Foliar fertilization in shaping the potato yield in the conditions of south-eastern Poland
,
Agronomy Science: Vol. 74 No. 3 (2019)
-
ALI HULAIL NOAEMA,
ALI RAHEEM KAREEM ALHASANY,
DHURGAM SABEEH KAREEM ALTAI,
BARBARA HELENA SAWICKA,
Effect of nano-boron spraying on the concentration of some nutrients in leaves and dry matter of two Vicia faba L. (Partim) cultivars
,
Agronomy Science: Vol. 74 No. 4 (2019)
-
ANDRZEJ KRUCZEK,
WITOLD SKRZYPCZAK,
Reaction of the medium early maize hybrids on the method of fertilization
,
Agronomy Science: Vol. 65 No. 1 (2010)
-
Stanisław Deryło,
Kazimierz Szymankiewicz,
Plonowanie i zachwaszczenie ziemniaka w warunkach zróżnicowanego poziomu agrotechniki na glebie lekkiej
,
Agronomy Science: Vol. 58 (2003)
-
TADEUSZ SADOWSKI,
BOGUMIŁ RYCHCIK,
Yield and chosen quality traits of winter rye grown in the period of conversion to organic cropping system
,
Agronomy Science: Vol. 65 No. 2 (2010)
-
Ryszard Weber,
Borys Hryńczuk,
The influence of tillage simplifications on variability in yields and yield components of several winter wheat cultivars
,
Agronomy Science: Vol. 59 No. 1 (2004)
-
Jolanta Bojarszczuk,
The assessment of production organization of farms conducting animal production in Lubelskie and Podlaskie voivodeships
,
Agronomy Science: ONLINE FIRST
-
Elvyra Jariene,
Honorata Danilčenko,
Optimization of storage conditions of new Lithuanian potato cultivars
,
Agronomy Science: Vol. 59 No. 4 (2004)
<< < 21 22 23 24 25 26 27 28 29 30 > >>
You may also start an advanced similarity search for this article.