Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 77 Nr 3 (2022)

Artykuły

Wpływ rolnictwa konwencjonalnego i ekologicznego na plonowanie roślin uprawnych i intensywność erozji wodnej na terenach urzeźbionych

DOI: https://doi.org/10.24326/as.2022.3.3
Przesłane: 27 maja 2022
Opublikowane: 28-10-2022

Abstrakt

The pro-health and pro-environmental assets of organic farming are a reason why this system is now promoted in agriculture. The objective of the research was to determine the effect of conventional and organic crop production (potato, oat, and spring vetch) on the yield, water erosion, losses of NPK nutrients, LAI, infiltration, and fresh mass of earthworms. From 2019 to 2021, a two-factor field experiment was carried out at the Mountain Experimental Station located in Czyrna (Southern Poland). The first factor included farming systems: conventional and organic. The second factor consisted of 3 crops grown with the use of crop rotation: 1. potato with manure; 2. oat; 3. spring vetch. Based on the experiment performed, it was found that the yield of the organically grown crops was on average 18.8% lower compared to that grown conventionally. Under the organic farming system, the mass of sheet wash was on average 6.47% smaller than that under the conventional farming system. As regards the NPK nutrients emitted into the environment, their losses was about 50% lower than that under the conventional system of farming, where there were applied artificially synthesized fertilizers and pesticides.

Bibliografia

  1. Barański M., Średnicka-Tober D., Rempelos L., Rembiałkowska E., 2021. Feed composition differences resulting from organic and conventional farming practices affect physiological parameters in Wistar rats – results from a factorial, two-generation dietary intervention trial. Nutrients 13(2), 1–34. https://doi.org/10.3390/nu13020377 DOI: https://doi.org/10.3390/nu13020377
  2. Bogunovic I., Pereira P., Kisic I., Sajko K., Srakac M., 2018. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 160, 376–384. https://doi.org/10.1016/j.catena.2017.10.009 DOI: https://doi.org/10.1016/j.catena.2017.10.009
  3. Bouche M., Al-Addan F., 1997. Earthworms, water infiltration and soil stability, some new assessments. Soil Biol. Biochem. 29(3–4), 441–452. https://doi.org/10.1016/S0038-0717(96)00272-6 DOI: https://doi.org/10.1016/S0038-0717(96)00272-6
  4. Cambardella C.A., Delate K., Jaynes D.B., 2015. Water quality in organic systems. Sustain. Agric. Res. 4, 60–69. http://dx.doi.org/10.5539/sar.v4n3p60 DOI: https://doi.org/10.5539/sar.v4n3p60
  5. Capowiez Y., Cadoux S., Bouchant P., Ruy S., Roger-Estrade J., Richard G., Boizard H., 2009. The effect of tillage type and cropping system on earthworm communities, macroporosity and water infiltration. Soil Tillage Res. 105, 209–216. https://doi.org/10.1016/j.still.2009.09.002 DOI: https://doi.org/10.1016/j.still.2009.09.002
  6. Crittenden S.J., Eswaramurthy T., de Goede R.G.M., Brussaard L., Pulleman M.M., 2014. Effect of tillage on earthworms over short- and medium-term in conventional and organic farming. Appl. Soil Ecol. 83, 140–148. http://dx.doi.org/10.1016/j.apsoil.2014.03.001 DOI: https://doi.org/10.1016/j.apsoil.2014.03.001
  7. Elbanowska H., Zerbe J., Siepak J., 1999. Fizyczno-chemiczne badania wód [Physico-chemical research of waters]. Wyd. Nauk. UAM, Poznań, pp. 232 [in Polish].
  8. Gaussen H., 1954. Théorie et classification des climats et microclimats [Theory and classification of climates and microclimates]. C.R. VIII ème Congres International de Botanique. 7, 125–130 [in French].
  9. Gomiero T., Pimentel D., Paoletti M.G., 2011. Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit. Rev. Plant Sci. 30, 95–124. https://doi.org/10.1080/07352689.2011.554355 DOI: https://doi.org/10.1080/07352689.2011.554355
  10. Hack H., Bleiholder H., Buhr L., Meier U., Schnock-Fricke U., Weber E., Witzenberger A., 1992. Einheitliche Codierung der phänologischen Entwicklungsstadien mono- und dikotyler Pflanzen – Erweiterte BBCH – Skala, Allgemein-Nachrichtenbl [Uniform coding of the phenological development stages of monocotyledonous and dicotyledonous plants – extended BBCH – scale, general news sheet]. Deut. Pflanzenschutzd. 44, 265–270 [in German].
  11. Kabała C., Charzyński P., Chodorowski J., Drewniak M., Glina B., Greinert A., Hulisz P., Jankowski M., Jonczak J., Łabaz B., Łachacz A., Marzec M., Mendyk Ł., Musiał P., Musielok Ł., Smreczak B., Sowiński P., Świtoniak M., Uzarowicz Ł., Waroszewski J., 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Sci. Annu. 70(2), 71–97. https://doi.org/10.2478/ssa-2019-0009 DOI: https://doi.org/10.2478/ssa-2019-0009
  12. Klima K., Lepiarczyk A., Chowaniak M., Boligłowa E., 2019. Soil protective efficiency of organic cultivation of cereals. J. Elem. 24(1), 357–368. https://doi.org/10.5601/jelem.2018.23.2.1610 DOI: https://doi.org/10.5601/jelem.2018.23.2.1610
  13. Kliszcz A., Puła J., 2020. The change of pH value and Octolasium cyaneum saving earthworms activity under stubble crops after spring triticale continuous cultivation. Soil Syst. 4(3), 39. https://doi.org/10.3390/soilsystems4030039 DOI: https://doi.org/10.3390/soilsystems4030039
  14. Kołodziejczyk M., Antonkiewicz J., Kulig B., 2017. Effect of living mulches and conventional methods of weed control on weed occurrence and nutrient uptake in potato. Int. J. Plant Prod. 11(2), 275–283.
  15. Lorenz K., Lal R., 2016. Environmental impact of organic agriculture. Adv. Agron. 139, 99–152. DOI: https://doi.org/10.1016/bs.agron.2016.05.003
  16. Le Bayon R-C., Binet F., 2001. Earthworm surface casts affect soil erosion by runoff water and phosphorous transfer in a temperate maize crop. Pedobiologia 45(5), 430–442. https://doi.org/10.1078/0031-4056-00097 DOI: https://doi.org/10.1078/0031-4056-00097
  17. Pulleman M., Jonghmans A., Marinissen J., Bouma J., 2003. Effects of organic versus conventional arable on soil structure and organic matter dynamics in a marine loam in the Netherlands. Soil Use Manage 19, 157–165. DOI: https://doi.org/10.1079/SUM2003186
  18. Riley H., Pommeresche R., Eltun R., Hansen S., Korsaeth A., 2008. Soil structure, organic matter and earthworm activity in a comparison of cropping systems with contrasting tillage, rotations, fertilizer levels and manure use. Agric. Ecosyst. Environ. 124, 275–284. DOI: https://doi.org/10.1016/j.agee.2007.11.002
  19. Rozporządzenie Ministra Środowiska z dnia 16 kwietnia 2019 w sprawie szczegółowych warunków szacowania szkód w uprawach i płodach rolnych [Regulation of the Minister of the Environment of April 16, 2019 on detailed conditions for estimating damage to crops and agricultural produce], Dz.U. z 2019 r., poz. 776 [in Polish].
  20. Sharpley A., McDowell R., Moyer B., Littlejohn R., 2011. Land application of manure can influence earthworm activity and soil phosphorus distribution. Commun. Soil Sci. Plant Anal. 42(2), 194–207. https://doi.org/10.1080/00103624.2011.535070 DOI: https://doi.org/10.1080/00103624.2011.535070
  21. Smolska E., 2002. The intensity of soil erosion in agricultural areas in north-eastern Poland. Landform Anal. 3, 25–33.
  22. Tiessen K., Lobb D., Mehuys G., 2007. The canon of potato science: 30. Tillage erosion within potato production – soil tillage, earthing up and planting. Potato Res. 50(3–4), 327–330. https://doi.org/10.1007/s11540-008-9055-8 DOI: https://doi.org/10.1007/s11540-008-9055-8
  23. Wainwright J., 1996. Infiltration, runoff and erosion characteristics of agricultural land in extreme storm events, SE France. Catena 26(1–2), 27–47. https://doi.org/10.1016/0341-8162(95)00033-X DOI: https://doi.org/10.1016/0341-8162(95)00033-X
  24. Wischmeier W.H., Smith D.D., 1978. Predicting rainfall erosion losses. Agriculture Handbook 537, Science and Education Administration United States Department of Agriculture in cooperation with Purdue Agricultural Experiment Station , Washington D.C., pp. 58.
  25. WRB FAO, 2015. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resources Report 106, Food and Agriculture Organization of the United Nations, Rome, pp. 190.
  26. Zambon N., Johannsen L., Strauss P., Dostal T., Zumr D., Cochrane T., Klik A., 2021. Splash erosion affected by initial soil moisture and surface conditions under simulated rainfall. Catena 196, 104827. https://doi.org/10.1016/j.catena.2020.104827 DOI: https://doi.org/10.1016/j.catena.2020.104827
  27. Ziętara W., Mirkowska Z., 2021. The green deal: towards organic farming or greening of agriculture?. Probl. Agric. Econ. 3(368), 29–54. https://doi.org/10.30858/zer/135520 DOI: https://doi.org/10.30858/zer/135520

Downloads

Download data is not yet available.

Podobne artykuły

<< < 29 30 31 32 33 34 35 36 37 38 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.