Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 78 Nr 2 (2023)

Artykuły

Preparaty pochodzenia roślinnego – ekologiczne narzędzie nowoczesnej strategii ochrony roślin przed grzybami chorobotwórczymi

DOI: https://doi.org/10.24326/as.2023.5061
Przesłane: 1 lutego 2023
Opublikowane: 26-09-2023

Abstrakt

Plants are a valuable source of many bioactive compounds. Numerous scientific studies confirm the antimicrobial effect of plant extracts against many phytopathogens, including pathogenic fungi. Currently, the attention is mainly focused on the production of preparations of plant origin containing stable and biodegradable biologically active compounds to control plant diseases. They are also an alternative to the conventional method of protection against pathogens. This review includes the characteristics of the most popular herbal plants (tansy, yarrow, garlic, horseradish, nettle) and the bioactive compounds contained in them, as well as the possibility of their use in plant protection, especially for control of pathogenic fungi.

Bibliografia

  1. Afshari M., Rahimmalek M., Miroliaei M., 2018. Variation in polyphenolic profiles, antioxidant and antimicrobial activity of different Achillea species as natural sources of antiglycative compounds. Chem. Biodivers. 15(8), e1800075. https://doi.org/10.1002/cbdv.201800075 DOI: https://doi.org/10.1002/cbdv.201800075
  2. Agneta R., Möllers C., Rivelli A.R., 2013. Horseradish (Armoracia rusticana), a neglected medical and condiment species with a relevant glucosinolate profile: a review. Genet. Resour. Crop. Ev. 60, 1923–1943. https://doi.org/10.1007/s10722-013-0010-4 DOI: https://doi.org/10.1007/s10722-013-0010-4
  3. Akira O., Kiyoo H., Yoshihiro Y., Nobuo T., Ken-ichi F., Taniguchi M., Tanaka T., 2005. Synergistic fungicidal activity of Cu2+ and allicin, an allyl sulfur compound from garlic and its relation to the role of alkyl hydroperoxide reductase 1 as a cell surface defense in Saccharomyces cerevisiae. Toxicology 215, 205–213. https://doi.org/10.1016/j.tox.2005.07.006 DOI: https://doi.org/10.1016/j.tox.2005.07.006
  4. Altamimi M. A., Abu-Reidah I. M., Altamimi A., Jaradat N., 2022. Hydroethanolic extract of Urtica dioica L. (stinging nettle) leaves as disaccharidase inhibitor and glucose transport in Caco-2 hinderer. Molecules 27(24), 8872. https://doi.org/10.3390/molecules27248872 DOI: https://doi.org/10.3390/molecules27248872
  5. Bączek K.B., Kosakowska O., Przybył J.L., Pióro-Jabrucka E., Costa R., Mondello, L., Gniewosz M., Synowiec A., Węglarz, Z., 2017. Antibacterial and antioxidant activity of essential oils and extracts from costmary (Tanacetum balsamita L.) and tansy (Tanacetum vulgare L.). Ind. Crop. Prod. 102, 154–163. https://doi.org/10.1016/j.indcrop.2017.03.009 DOI: https://doi.org/10.1016/j.indcrop.2017.03.009
  6. Bączek K., Kosakowska O., Przybył J.L., Kuźma P., Ejdys M., Obiedziński M., Węglarz, Z., 2015. Intraspecific variability of yarrow (Achillea millefolium L. s l) in respect of developmental and chemical traits. Herba Pol. 61(3), 37–52. https://doi.org/10.1515/hepo-2015-0021 DOI: https://doi.org/10.1515/hepo-2015-0021
  7. Behiry S.I., Philip B., Salem M.Z.M., Amer M.A., El-Samra I.A., Abdelkhalek A., Heflish A., 2022. Urtica dioica and Dodonaea viscosa leaf extracts as eco-friendly bioagents against Alternaria alternata isolate TAA-05 from tomato plant. Sci. Rep. 1, 12(1), 16468. https://doi.org/10.1038/s41598-022-20708-4 DOI: https://doi.org/10.1038/s41598-022-20708-4
  8. Bhusal K.K., Magar S.K., Thapa R., Lamsal A., Bhandari S., Maharjan R., Shrestha J., 2022. Nutritional and pharmacological importance of stinging nettle (Urtica dioica L.): A review. Heliyon 22, 8(6), e09717. https://doi.org/10.1016/j.heliyon.2022.e09717 DOI: https://doi.org/10.1016/j.heliyon.2022.e09717
  9. Biller E., Waszkiewicz-Robak B., Obiedziński M., Kalinowski K., 2019. Antioxidant properties of horseradish (Armoracia rusticana) – pilot studies. Pol. J. Appl. Sci. 4(2), 55–59. https://doi.org/10.34668/PJAS.2018.4.2.03
  10. Burgieł Z.J., 2005. Czy preparaty roślinne zastąpią syntetyczne pestycydy? [Will plant preparations replace synthetic pesticides?]. In: Ochrona środowiska naturalnego w XXI wieku – nowe wyzwania i zagrożenia [Environmental protection in the 21st century – new challenges and threats]. Fund. na Rzecz Wspierania Badań Naukowych. Wydział Ogrodniczy AR w Krakowie, 116−125.
  11. Burgieł Z., 1995. Fungistatyczna aktywność wodnych wyciągów z ziela pokrzywy zwyczajnej (Urtica dioica L.) i korzeni żywokostu lekarskiego (Symphytum officinale L.). Pestycydy 4, 21–25.
  12. Candan F., Unlu M., Tepe B., Daferera D., Polissiou M., Sökmen A., Akpulat H.A., 2003. Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). J. Ethnopharmacol. 87(2–3), 215–220. https://doi.org/10.1016/s0378-8741(03)00149-1 DOI: https://doi.org/10.1016/S0378-8741(03)00149-1
  13. Commisso M., Guarino F., Marchi L., Muto A., Piro A., Degola F., 2021. Bryo-activities: A review on how bryophytes are contributing to the arsenal of natural bioactive compounds against fungi. Plants 10(2), 203. https://doi.org/10.3390/plants10020203 DOI: https://doi.org/10.3390/plants10020203
  14. Coté H., Boucher M.A., Pichette A., Legault J., 2017. Anti-inflammatory, antioxidant, antibiotic, and cytotoxic activities of Tanacetum vulgare L. essential oil and its constituents. Medicines 4(2), 34. https://doi.org/10.3390/medicines4020034 DOI: https://doi.org/10.3390/medicines4020034
  15. D’Addabbo T., Laquale S., Perniola M., Candido V., 2019. Biostimulants for plant growth promotion and sustainable management of phytoparasitic nematodes in vegetable crops. Agronomy 9, 616. https://doi.org/10.3390/agronomy9100616 DOI: https://doi.org/10.3390/agronomy9100616
  16. Dall’Acqua S., Bolego C., Cignarella A., Gaion R.M., Innocenti G., 2011. Vasoprotective activity of standardized Achillea millefolium extract. Phytomedicine 18(12), 1031–1036. https://doi.org/10.1016/j.phymed.2011.05.005 DOI: https://doi.org/10.1016/j.phymed.2011.05.005
  17. Dębski B., Milner J.A., 2007. Molekularne mechanizmy przeciwnowotworowego działania czosnku. Rola reaktywnych form tlenu [Molecular mechanisms of anticancer properties of garlic. The role of free radicals]. Bromat. Chem. Toksykol. 40(3), 223–228.
  18. Derda M., Hadaś E., Thiem B., Wojt W.J., Wojtkowiak-Giera A., Cholewiński M., Skrzypczak Ł., 2012. Tanacetum vulgare L. jako roślina o potencjalnych właściwościach leczniczych w Acanthamoeba Keratitis. Now. Lek. 81(6), 620–621.
  19. Devkota H.P., Paudel K.R.. Khanal S., Baral A., Panth N., Adhikari-Devkota A., Jha N.K., Das N., Singh S.K., Chellappan D.K., Dua K., Hansbro P.M., 2022. Stinging nettle (Urtica dioica L.): nutritional composition, bioactive compounds, and food functional properties. Molecules 27(16), 5219. https://doi.org/10.3390/molecules27165219 DOI: https://doi.org/10.3390/molecules27165219
  20. Devrnja N., Anđelković B., Aranđelović S., Radulović S., Soković M., Krstić-Milošević D., Ristić M., Ćalić, D., 2017. Comparative studies on the antimicrobial and cytotoxic activities of Tanacetum vulgare L. essential oil and methanol extracts. S. Afr. J. Bot. 111, 212–221. https://doi.org/10.1016/j.sajb.2017.03.028 DOI: https://doi.org/10.1016/j.sajb.2017.03.028
  21. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. OJ EU, L 309/71–86. Fierascu I., Ungureanu C., Avramescu S. M., Fierascu R. C., Ortan A., Soare L. C., Paunescu, A., 2015. In vitro antioxidant and antifungal properties of Achillea millefolium L. Rom. Biotechnol. Lett. 20, 10626–10636.
  22. Grzyb A., Waraczewska Z., Niewiadomska A., Wolna-Maruwka A., 2019. Czym są biopreparaty i jakie jest ich zastosowanie? [What are biopreparations and what is their use?]. Nauka Przyr. Tech. 13(2), 65–67. https://dx.doi.org/10.17306/J.NPT.00275
  23. Harris J.C., Cottrell S., Plummer S., Lloyd D., 2001. Antimicrobial properties of Allium sativum (Garlic). Appl. Microbiol. Biotechnol. 57, 282–286. http://dx.doi.org/10.1007/s002530100722 DOI: https://doi.org/10.1007/s002530100722
  24. Heller K., Andruszewska A., Wielgusz K., 2010. The cultivation of linseed by ecological methods. J. Res. Appl. Agric. Eng. 55(3), 112–116.
  25. Ivănescu B., Tuchiluș C., Corciovă A., Lungu C., Mihai C.T., Gheldiu A.M., Vlase L., 2018. Antioxidant, antimicrobial and cytotoxic activity of Tanacetum vulgare, Tanacetum corymbosum and Tanacetum macrophyllum extracts. Farmacia 66(2), 282–288.
  26. Jafernik K., Szopa A., Ekiert H., 2019. Pelargonia przylądkowa (afrykańska) (Pelargonium sidoides), chrzan pospolity (Armoracia rusticana) oraz nasturcja większa (Tropaeolum majus) – skład chemiczny, aktywność biologiczna oraz znaczenie w fitoterapii [Cape (African) geranium (Pelargonium sidoides), horseradish (Armoracia rusticana) and greater nasturtium (Tropaeolum majus) – chemical composition, biological activity and importance in phytotherapy]. Farmakoterapia 29(11), 12–19.
  27. Jamiołkowska A., 2013. Preparaty biotechniczne i biologiczne w ochronie papryki słodkiej (Capsicum annuum L.) przed grzybami chorobotwórczymi i indukowaniu reakcji obronnych roślin [Biotechnical and biological preparations in the protection of sweet pepper (Capsicum annuum L.) against pathogenic fungi and induction of plant defense reactions]. Rozprawy Naukowe UP w Lublinie, 379, pp. 117.
  28. Jamiołkowska A., 2020. Natural compounds as elicitors of plant resistance against diseases and new biocontrol strategies. Agronomy Basel. 10(2), 173. https://doi.org/10.3390/agronomy10020173 DOI: https://doi.org/10.3390/agronomy10020173
  29. Kaczorová D., Karalija E., Dahija S., Bešta-Gajević R., Parić A., Ćavar Zeljković, S., 2021. Influence of Extraction Solvent on the Phenolic Profile and Bioactivity of Two Achillea Species. Molecules 26(6), 1601. https://doi.org/10.3390/molecules26061601 DOI: https://doi.org/10.3390/molecules26061601
  30. Kawka M., Pilarek M., Sykłowska-Baranek K., Pietrosiuk A., 2017. Roślinne metabolity jako kluczowy bioprodukt biotechnologii roślin [Plant secondary metabolites as an essential bioproduct of plant biotechnology]. Prospect. Pharm. Sci. 8, 68–79. https://doi.org/https://doi.org/10.56782/pps.80 DOI: https://doi.org/10.56782/pps.80
  31. Kempka J. 2014. Biologiczna ochrona roślin przed chorobami jako element integrowanej ochrony roślin [Biological plant protection against diseases as an element of integrated plant protection]. Centrum Doradztwa Rolniczego w Brwinowie, Kraków, pp. 22.
  32. Keser S., Celik S., Tourkoglu S., Yilmaz Ö., Tourkoglu I. 2013. Antioxidant activity, total phenolic and flavonoid content of water and ethanol extracts from Achillea millefolium L. Turk. J. Pharm. Sci. 10(3), 38–392.
  33. Krzepiłko A., Kordowska-Wiater M., Sosnowska B., Pytka M., 2020. Oddziaływanie ekstraktów roślinnych na drobnoustroje [Effect of plant extracts on microorganisms]. Wyd. UP w Lublinie, Lublin. DOI: https://doi.org/10.24326/mon.2020.4
  34. Kursa W., 2022. Potencjał biobójczy roślin alternatywą dla rolnictwa zrównoważonego [Plant biocidal potential as an alternative to sustainable agriculture]. Aura 11, 9–10. https://doi.org/10.15199/2.2022.11.1 DOI: https://doi.org/10.15199/2.2022.11.1
  35. Kursa W., Jamiołkowska A., Skwaryło-Bednarz B., Kowalski R., Wyrostek J., Patkowska E., Kopacki M., 2022. In vitro efficacy of herbal plant extracts on some phytopathogenic fungi. Acta Sci Pol. Hortorum Cultus 21(6), 79–90. https://doi.org/10.24326/asphc.2022.6.7 DOI: https://doi.org/10.24326/asphc.2022.6.7
  36. Manuguerra S., Caccamo L., Mancuso M., Arena R., Alessandro C., Rappazzo A.C., Genovese L., Santulli A., Messina C.M., Maricchiolo G., 2020. The antioxidant power of horseradish, Armoracia rusticana, underlies antimicrobial and antiradical effects, exerted in vitro, Nat. Prod. Res. 34(11), 1567–1570. https://doi.org/10.1080/14786419.2018.1517121 DOI: https://doi.org/10.1080/14786419.2018.1517121
  37. Martyniuk S., 2017. A preliminary examination of Timorex Gold 24 EC as a natural seed dressing for winter wheat. J. Res. Appl. Agric. Eng. 62(3), 212–215.
  38. Mickiewicz A., Mickiewicz B., 2014. Stosowanie środków produkcji w świetle nowych zasad integrowanej ochrony roślin [Use of production means in light of new rules of integrated plant protection]. Rocz. Nauk. Stow. Ekon. Rol. Agrobiz. 16(5), 160–168.
  39. Mołoń A., Durak R., 2018. Biopestycydy jako stymulatory odporności roślin [Biopesticides as plant resistant stimulators]. Polish J. Sustain. Dev. 22(1), 69–74. DOI: https://doi.org/10.15584/pjsd.2018.22.1.9
  40. Montanarella L., Panagos P., 2021. The relevance of sustainable soil managment within Europen Green Deal. Land Use Policy 100, 104950. https://doi.org/10.1016/j.landusepol.2020.104950 DOI: https://doi.org/10.1016/j.landusepol.2020.104950
  41. Mot C.A., Lupitu A.I., Bungau S., Iovan C., Copolovici D.M., Purza L., Melinte E.C., Copolovici L., 2018. Composition and antioxidant activity of aqueous extracts obtained from herb of Tansy (Tanacetum vulgare L.). Revista de Chimie 69(5), 1041–1044. https://doi.org/10.37358/RC.18.5.6257 DOI: https://doi.org/10.37358/RC.18.5.6257
  42. Mundy L., Pendry B., Rahman M., 2016. Antimicrobial resistance and synergy in herbal medicine. J. Herb. Med. 6(2), 53–58. https://doi.org/10.1016/j.hermed.2016.03.001 DOI: https://doi.org/10.1016/j.hermed.2016.03.001
  43. Nawrot R., Warowicka A., Musidlak O., Węglewska M., Bałdysz S., Goździcka-Józefiak A., 2020. Przeciwwirusowe związki izolowane z roślin [Antiviral compounds isolated from plants]. Post. Bioch. 66(4), 357–364. https://doi.org/10.18388/pb.2020_361 DOI: https://doi.org/10.18388/pb.2020_361
  44. Organic Materials Review Institute, https://www.omri.org/omri-lists
  45. Park J.H., Park Y.K., Park E., 2009. Antioxidative and antigenotoxic effects of garlic (Allium sativum L.) prepared by different processing methods. Plant Foods Hum. Nutr. 64(4), 244–249. https://doi.org/10.1007/s11130-009-0132-1 DOI: https://doi.org/10.1007/s11130-009-0132-1
  46. Parlińska, M., Jaśkiewicz, J., Rackiewicz I., 2020. Wyzwania dla rolnictwa związane ze strategią Europejski Zielony Ład w okresie pandemii [Challenges for agriculture under the European Green Deal Development Strategy during the Covid-19 pandemic period]. Zesz. Nauk. Szk. Gł. Gospod. Wiej. Warsz., Probl. Rol. Światowego 20(25), 22–36. https://doi.org/10.22630/PRS.2020.20.2.10 DOI: https://doi.org/10.22630/PRS.2020.20.2.10
  47. Petrović V., Četojević-Simin D., Milanović M., Vulić J., Milić N., 2021. Polyphenol rich horseradish root extracts and juice: In vitro antitumor activity and mechanism of action. Vojnosanit. Pregl. 78(7), 745–754. https://doi.org/10.2298/VSP190212123P DOI: https://doi.org/10.2298/VSP190212123P
  48. Plaszkó T., Szűcs Z., Vasas G., Gonda S., 2021. Effects of glucosinolate-derived isothiocyanates on fungi: a comprehensive review on direct effects, mechanisms, structure-activity relationship data and possible agricultural applications. J. Fungi 7(7), 539. https://doi.org/10.3390/jof7070539 DOI: https://doi.org/10.3390/jof7070539
  49. Pruszyński S., Mrówczyński M., Pruszyński G., 2008. Ochrona roślin w integrowanej technologii produkcji roślinnej [Ochrona roślin w integrowanej technologii produkcji roślinnej]. Probl. Inż. Rol. 1, 87–97.
  50. Rahimmalek M., Tabatabaei B.E.S., Etemadi N., Goli S.A.H., Arzani A., Zeinali H., 2009. Essential oil variation among and within six Achillea species transferred from different ecological regions in Iran to the field conditions. Ind. Crop. Prod. 29(2–3), 348–355. DOI: https://doi.org/10.1016/j.indcrop.2008.07.001
  51. Ratajczak K., Piotrowska-Cyplik A., Myszka K., 2017. Badania metapopulacyjne wybranych fermentowanych produktów pochodzenia roślinnego. Postępy Nauki Technol. Prz. Rol.-Spoż. 72(3), 26–38.
  52. Rezende J.L., Fernandes C.C., Costa A.O.M., Santos L.S., Neto F.V., Sperandio E.M., Souchie E.L., Colli A.C., Crotti A.E.M., Miranda M.L.D., 2020. Antifungal potential of essential oils from two varieties of Citrus sinensis (lima orange and bahia navel orange) in postharvest control of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill. Food Sci. Technol Campinas 40(2), 405–409. https://doi.org/10.1590/fst.30519 DOI: https://doi.org/10.1590/fst.30519
  53. Salas M.P., Céliz G., Geronazzo H., Daz M., Resnik S.L., 2011. Antifungal activity of natural and enzymatically-modified flavonoids isolated from citrus species. Food Chemistry 124(4), 1411–1415. https://doi.org/10.1016/j.foodchem.2010.07.100 DOI: https://doi.org/10.1016/j.foodchem.2010.07.100
  54. Šernaité L., 2017. Plant extracts: antimicrobial and antifungal activity and appliance in plant protection (review). Sodininkystė ir Daržininkystė 36(3/4), 58–68.
  55. Sosnowska D., Sobiczewski P., Zbytek Z., Czembor J.H., 2016. Integrowana produkcja roślin – korzyści i perspektywy [Integrated plant production – benefits and prospects]. Post. Ochr. Rośl./ Prog. Plant Prot. 56(1), 115–119. https://doi.org/10.14199/ppp-2016-020 DOI: https://doi.org/10.14199/ppp-2016-020
  56. Stoin D., Radu F., Dogaru D., 2007. Researches regarding the isolation, purification and analysis of sinigrin glucosinolate from Brassica nigra and Armoracia rusticana. Bull. USAMV Agric. 63, 77–82. DOI: https://doi.org/10.15835/buasvmcn-agr:1310
  57. Sultana V., Baloch G.N., Ara J., Esteshamul-Haque S., Tariq R.M., Athar M., 2011. Seaweeds as alternative to chemical pesticides for the management of root diseases of sunflower and tomato. J. Appl. Bot. Food Quality 84, 162–168.
  58. Świerczyńska I., 2010. Wpływ wybranych biopreparatów na wzrost kilku gatunków grzybów z rodzaju Fusarium w warunkach laboratoryjnych [Influence of selected biopreparations on the growth of several species of fusarium in laboratory conditions]. J. Res. Appl. Agric. Eng. 55(4), 158–161.
  59. Szymona J., 2010. Problem pozostałości chemicznych środków ochrony roślin w surowcach ekologicznych [Problem of chemical plant protection products' residues in organic raw material]. J. Res. Appl. Agric. Eng. 55(4), 146–149.
  60. Tarasevičienė Ž., Vitkauskaitė M., Paulauskienė A., Černiauskienė J., 2023. Wild stinging nettle (Urtica dioica l.) leaves and roots chemical composition and phenols extraction. Plants 12(2), 309. https://doi.org/10.3390/plants120203,09 DOI: https://doi.org/10.3390/plants12020309
  61. Tedeschi P., Leis M., Pezzi M., Civolani S., Maietti A., Brandolini V., 2011. Insecticidal activity and fungitoxicity of plant extracts and components of horseradish (Armoracia rusticana) and garlic (Allium sativum). J. Environ. Sci. Health B. 46(6), 486–490. https://doi.org/10.1080/03601234.2011.583868
  62. Tomsone L., Galoburda R., Kruma Z., Durrieu V., Cinkmanis I., 2020. Microencapsulation of horseradish (Armoracia rusticana L.) juice using spray-drying. Foods 9, 1332. https://doi.org/10.3390/foods9091332 DOI: https://doi.org/10.3390/foods9091332
  63. USDA, 2017. National Organic Program. United States Department of Agriculture, https://www.ams.usda.gov/about-ams/programs-offices/national-organic-program
  64. Vajić U.J., Grujić-Milanović J., Živković J., Šavikin K., Gođevac D., Miloradović Z., Bugarski B., Mihailović-Stanojević N., 2015. Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology. Ind. Crops Prod. 74, 912–917. https://doi.org/10.1016/j.indcrop.2015.06.032 DOI: https://doi.org/10.1016/j.indcrop.2015.06.032
  65. Vajić U.J., Grujić-Milanović J., Živković J., Šavikin K., Gođevac D., Miloradović Z., Bugarski B., Mihailović-Stanojević N., 2015. Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology. Ind. Crop. Prod. 74, 912–917. https://doi.org/10.1016/j.indcrop.2015.06.032 DOI: https://doi.org/10.1016/j.indcrop.2015.06.032
  66. Verma S.R., Joshi N., Padalia R.C., Goswami P., Singh V.R., Chauhan A., Verma S.K., Iqbal H., Verma R.K., Chanda D., Sundaresan V., Darokar M.P., 2017. Chemical composition and allelopathic, antibacterial, antifungal and in vitro acetylcholinesterase inhibitory activities of yarrow (Achillea millefolium L.) native to India. Ind. Crop. Prod. 104, 144–155. https://doi.org/10.1016/j.indcrop.2017.04.046 DOI: https://doi.org/10.1016/j.indcrop.2017.04.046
  67. Vilhelmova N., Simeonova L., Nikolova N., Pavlova E., Gospodinova Z., Antov G., Galabov A., Nikolova I., 2020. Antiviral, cytotoxic and antioxidant effects of Tanacetum vulgare L. crude extract in vitro. Folia Medica 62, 172–179. https://doi.org/10.3897/folmed.62.e49370 DOI: https://doi.org/10.3897/folmed.62.e49370
  68. Villaverde J.J., Sandin-Espấna P., Sevilla-Morañ B., López-Goti C., Alonso-Prados J.L., 2016. Biopesticides from natural products: Current development, legislative framework and future trends. BioRes. 11, 5618–5640. DOI: https://doi.org/10.15376/biores.11.2.Villaverde
  69. Vitalini S., Beretta G., Iriti M., Orsenigo S., Basilico N., Dall’Acqua S., Iorizzi M., Fico G., 2011. Phenolic compounds from Achillea millefolium L. and their bioactivity. Acta Biochim. Pol. 58(2), 203–209. DOI: https://doi.org/10.18388/abp.2011_2266
  70. Wolski T., Gliński J., 1998. Metabolity stresowe i inne substancje biologicznie czynne jako naturalne czynniki odporności roślin [Stress making metabolites and other biologically active substances as natural factors of plant resistance]. Zesz. Probl. Post. Nauk Roln. 461, 67–87.
  71. Yakhin O.I., Lubyanov A.A., Yakhin I.A., Brown P.H., 2017. Biostimulants in plant science: a global perspective. Front. Plant Sci. 7, 2049. https://doi.org/10.3389/fpls.2016.02049 DOI: https://doi.org/10.3389/fpls.2016.02049
  72. Zawiślak G., Nurzyńska-Wierdak R., 2017. Plon surowca uprawianych oraz dziko rosnących roślin krwawnika pospolitego (Achillea millefolium L.) i wrotyczu pospolitego (Tanacetum vulgare L.) [Yield of raw material of cultivated and wild-growing yarrow (Achillea millefolium L.) and tansy (Tanacetum vulgare L.) plant]. Ann. Hortic. 27(2), 27–35. https://doi.org/10.24326/ah.2017.2.3 DOI: https://doi.org/10.24326/ah.2017.2.3
  73. Zulfiqar F., Casadesús A., Brockman H., Munné-Bosch S., 2020. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts, Plant Science 295, 110194, https://doi.org/10.1016/j.plantsci.2019.110194 DOI: https://doi.org/10.1016/j.plantsci.2019.110194

Downloads

Download data is not yet available.

Podobne artykuły

<< < 27 28 29 30 31 32 33 34 35 36 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.