Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 78 Nr 4 (2023)

Artykuły

Weed infestation and its biodiversity under the influence of different herbicide variants application in maize cultivation

DOI: https://doi.org/10.24326/as.2023.5212
Przesłane: 10 czerwca 2023
Opublikowane: 18-04-2024

Abstrakt

CThe main objective of Integrated Pest Management is to minimize the negative impact of pesticide use on the environment. For this purpose, technologies are developed that involve reducing doses of herbicides whose efficacy can be enhanced by adding adjuvants. This field study aimed to determine the weed control efficacy of herbicide applied at reduced doses in relation to full dose at different growth stages of maize. In the experiment, pre-emergence herbicide was applied at stage BBCH 00, while a post-emergence herbicide was at the 3, 6, or 8 leaves of maize. The herbicides were applied at doses reduced to 60% or 80% with adjuvants or at a full dose. The study has shown that pre-emergence or early post-emergence (in BBCH 13) application of the herbicide had the most beneficial effect on reducing the number and biomass of weeds in maize. The use of the doses reduced by 20% with the addition of adjuvant gave the same weed-killing effect as a 100% dose.

Bibliografia

  1. Amosun J.O., Aluko O.A., Ilem D.O., 2021. Comparative effect of weed control methods on Mexican sunflower (Tithonia diversifolia) in maize. Afr. J. Plant Sci. 15(4), 115–122. https://doi.org/10.5897/AJPS2020.2114
  2. Andr J., Hejnák V., Jursík M., Fendrychová V., 2014. Effects of application terms of three soil active herbicides on herbicide efficacy and reproductive ability for weeds in maize. Plant Soil Environ. 60(10), 452–458. DOI: https://doi.org/10.17221/561/2014-PSE
  3. Cerrudo D., Page E.R., Tollenaar M., Stewart G., Swanton C.J., 2012. Mechanisms of yield loss in maize caused by weed competition. Weed Sci. 60, 225–232. https://doi.org/10.1614/WS-D-11-00127.1 DOI: https://doi.org/10.1614/WS-D-11-00127.1
  4. Chojnacka S., Kwiatkowski C.A., Haliniarz M., Drabowicz-Żybura M., 2018. Wpływ wybranych herbicydów na parametry biometryczne i komponenty plonu prosa zwyczajnego (Panicum miliaceum L.). Fragm. Agron. 35(3), 37–46. https://doi.org/10.26374/fa.2018.35.27
  5. Dogan N.M., Kemmer A., Hurle K., 1999. Influence of weed growth stage on the performance of reduced herbicide doses. 11th EWRS Symposium, Basel 165.
  6. EPPO, 2022. PP 1/248 (3) Harmonized system for classification and coding of the uses of plant protection products. EPPO Bull. 52(1), 17–24. https://doi.org/10.1111/epp.12789 DOI: https://doi.org/10.1111/epp.12789
  7. EPPO, 2021a. PP 1/50 (4) Weeds in maize. EPPO Bull. 51(1), 92–92. https://doi.org/10.1111/epp.12719 DOI: https://doi.org/10.1111/epp.12719
  8. EPPO, 2021b. EPPO Global Database, https://gd.eppo.int [date of access: 20.11.2021].
  9. Evans S.P., Knezevic S.Z., Lindquist J.L., Shapiro C.A., Blankenship E.E., 2003. Nitrogen application influences the critical period for weed control in corn. Weed Sci. 51(3), 408–417. https://doi.org/10.1614/0043-1745(2003)051[0408:NAITCP]2.0.CO;2 DOI: https://doi.org/10.1614/0043-1745(2003)051[0408:NAITCP]2.0.CO;2
  10. Ferrero A., Scanzio M., Acutis M., 1996. Critical period of weed interference in maize. Proc. 2nd Int. Weed Control Congress, Copenhagen, 171–176.
  11. Głowacka A., Flis-Olszewska E., 2022. The biodiversity of weed communities of dent maize, narrow-leaved lupin and oat in relation to cropping system and weed control. Agron. Sci. 77(3), 123–137. https://doi.org/10.24326/as.2022.3.9 DOI: https://doi.org/10.24326/as.2022.3.9
  12. Haliniarz M., 2019. Reakcja wybranych agrofitocenoz na zróżnicowane dawki substancji biologicznie czynnych herbicydów. Rozprawy Naukowe UP w Lublinie, 394.
  13. Haliniarz M., Chojnacka S., Justyna Ł., Kwiatkowski C.A., Rusecki H., 2020. The effect of different doses of nicosulfuron on selected biometric features, white goosefoot (Chenopodium album L.), cockspur (Echinochloa crus-galli L.) and scentless false mayweed (Matricaria maritima subsp. inodora L.). Agron. Sci. 75(2), 73–84. https://doi.org/10.24326/as.2020.2.6 DOI: https://doi.org/10.24326/as.2020.2.6
  14. Haliniarz M., Chojnacka S., Rusecki H., Gawęda D., Justyna Ł. 2018. The effect of combined use of herbicide and growth retardants as well as diversified mineral fertilization on weed infestation of spring wheat. Agron. Sci. 73(4), 111–123. https://doi.org/10.24326/asx.2018.4.10 DOI: https://doi.org/10.24326/asx.2018.4.10
  15. Iqbal S., Tahir S., Dass A., Bhat M.A., Rashid Z., 2020. Bioefficacy of preemergent herbicides for weed control in maize, a review on weed dynamics evaluation. J. Exp. Agric. Int. 42(8), 13–23. https://doi.org/10.9734/jeai/2020/v42i830565 DOI: https://doi.org/10.9734/jeai/2020/v42i830565
  16. Kabała C., Charzyński P., Chodorowski J., Drewnik M., Glina B., Greinert A., Hulisz P., Jankowski M., Jonczak J., Łabaz B., Łachacz A., Marzec M., Mazurek R., Mendyk Ł., Musiał P., Musielok Ł., Smreczak B., Sowiński P., Świtoniak M., Uzarowicz Ł., Waroszewski J., 2019a. Systematyka Gleb Polski. Wyd. UP Wrocław, 132–139.
  17. Kabała C., Charzyński P., Chodorowski J., Drewnik M., Glina B., Greinert A., Hulisz P., Jankowski M., Jonczak J., Łabaz B., Łachacz A., Marzec M., Mendyk Ł., Musiał P., Musielok Ł., Smreczak B., Sowiński P., Świtoniak M., Uzarowicz Ł., Waroszewski J., 2019b. Polish soil
  18. classification, 6th edition – principles, classification scheme and correlations. Soil Sci. Ann. 70(2), 71–97. DOI: https://doi.org/10.2478/ssa-2019-0009
  19. Khaffagy A.E., El-Hassan RGMA, Sharshar A.A.H., 2020. Improving the efficiency of herbicides by adding mineral oil on maize (Zea mays L.) crop and associated weeds. Egypt. J. Agron. 42(2), 151–162. https://doi.org/10.21608/AGRO.2020.27108.1209 DOI: https://doi.org/10.21608/agro.2020.27108.1209
  20. Kieloch R., Domaradzki K., 2011. The role of the growth stage of weeds in their response to reduced herbicide doses. Acta Agrobot. 64(4), 259–266. https://doi.org/10.5586/aa.2011.068 DOI: https://doi.org/10.5586/aa.2011.068
  21. Knezevic S.Z., Evans S.P., Blankenship E.E., van Acker R.C., Lindquist J.L., 2002. Critical period for weed control, The concept and data analysis. Weed Sci. 50, 773–786. https://doi.org/10.1614/0043-1745(2002)050[0773:CPFWCT]2.0.CO;2 DOI: https://doi.org/10.1614/0043-1745(2002)050[0773:CPFWCT]2.0.CO;2
  22. Krawczyk R., Kaczmarek S., 2009. Possibilities of weed control in spring cereals using small herbicide doses in Poland conditions. J. Centr. Europ. Agric. 10, 433–438.
  23. Kudsk P., 2008. Optimising herbicide dose, a straightforward approach to reduce the risk of side effects of herbicides. Environmentalist 28, 49–55. DOI: https://doi.org/10.1007/s10669-007-9041-8
  24. Landau Ch.A., Hager A.G., Tranel P.J., Davis A.S., Martin N.F., Williams II M.M., 2021. Future efficacy of pre-emergence herbicides in corn (Zea mays) is threatened by more variable weather. Pest Manag. Sci. 77(6), 2683–2689. https://doi.org/10.1002/ps.6309 DOI: https://doi.org/10.1002/ps.6309
  25. Lehoczky E., Marton L., Nagy P., 2013. Competition for nutrients between cold-tolerant maize and weeds. Commun. Soil Sci. Plant Anal. 44(1–4), 526–534. https://doi.org/10.1080/00103624.2013.744156 DOI: https://doi.org/10.1080/00103624.2013.744156
  26. Mahto R., Kumar C., Singh R.K., 2020. Weed management in maize (Zea mays L.) through 4-hydroxyphenylpyruvate dioxygenase inhibitor herbicide with or without a methylated seed oil adjuvant. Pestic. Res. J. 32(1), 179–185. https://doi.org/10.1080/00103624.2013.744156 DOI: https://doi.org/10.5958/2249-524X.2020.00004.7
  27. Mehmeti A., Fetahaj R., Demaj A., Nishori F., Rracaj V., 2019. Evaluation of pre- and post-emergence herbicides for weed control in maize (Zea mays L.). J. Central Eur. Agric. 20(1), 208–221. https://doi.org/10.5513/JCEA01/20.1.2393 DOI: https://doi.org/10.5513/JCEA01/20.1.2393
  28. Mirek Z., Piękoś-Mirkowa H., Zając A., Zając M., 2002. Flowering plants and pteridophytes of Poland. A checklist. Biodiversity of Poland, Wyd. Inst. Bot. PAN, Kraków.
  29. Nadeem M.A., Abbas T., Bashir T., Maqbool R., 2018. Integrated role of row spacing and adjuvant to reduce herbicide dose in maize under semi-arid conditions. Planta Daninha. https://doi.org/10.1590/S0100-83582018360100037 DOI: https://doi.org/10.1590/s0100-83582018360100037
  30. Niemczak M., Sobiech Ł., Grzanka M. 2020. Iodosulfuron-methyl-based herbicidal ionic liquids comprising alkyl betainate cation as novel active ingredients with reduced environmental impact and excellent efficacy. J. Agric. Food Chem. 68, 13661−13671. https://doi.org/10.1021/acs.jafc.0c05850 DOI: https://doi.org/10.1021/acs.jafc.0c05850
  31. Sarabi V., Mohassel M.H.R., Valizadeh M., 2011. Response of redroot pigweed (Amaranthus retroflexus L.) to tank mixtures of 2,4-D plus MCPA with foramsulfuron. Australian J. Crop Sci. 5(5), 605–610.
  32. Schortgen G.P., Patton A.J., 2020. Weed control by 2,4-D dimethylamine depends on mixture water hardness and adjuvant inclusion but not spray solution storage time. Weed Tech. 34(1), 107–116. https://doi.org/10.1017/wet.2019.117 DOI: https://doi.org/10.1017/wet.2019.117
  33. Shannon C.E., Wiener W., 1948. A mathematical theory of communication. Univ. Illinois Press, Urbana, 29–125.
  34. Simić M.S., Dragičević V., Chachalis D., Dolijanović Ž., Brankov M., 2020. Integrated weed management in long-term maize cultivation. Zemdirbyste 107(1), 33–40. https://doi.org/10.13080/z-a.2020.107.005 DOI: https://doi.org/10.13080/z-a.2020.107.005
  35. Simpson E.H. 1949. Measurement of diversity. Nature 163, 688. DOI: https://doi.org/10.1038/163688a0
  36. Sobiech Ł., Grzanka M., Skrzypczak G., Idziak R., Włodarczyk S., Ochowiak S., 2020. Effect of adjuvants and pH adjuster on the efficacy of sulcotrione herbicide. Agronomy 10, 530. https://doi.org/10.3390/agronomy10040530 DOI: https://doi.org/10.3390/agronomy10040530
  37. Sörensen T., 1948. A method of establishing groups of equal amplitude in plant society based on similarity of species content. K. Danske Vidensk. Selesk 5, 34.
  38. Wang C.J., Liu Z.Q., 2007. Foliar uptake of pesticides. Present status and future challenge. Pestic. Biochem. Phys. 87(1), 1–8. https://doi.org/10.1016/j.pestbp.2006.04.004 DOI: https://doi.org/10.1016/j.pestbp.2006.04.004
  39. Woźnica Z., Idziak R., 2010. Influence of herbicide application timings, rates and adjuvant type on weed control and yield of maize grown for forage. Acta Sci. Pol. Agricultura 9(4), 77–84.
  40. Woźnica Z., Idziak R., 2015. Influence of reduced rates of herbicides applied with adjuvants at various dates on weed control and yield of maize. Fragm. Agron. 32, 111–118.
  41. Yanev M., Mitkov A., Neshev N., 2021. Influence of herbicides and application timing on broadleaf weeds control in maize (Zea mays L.). Bulg. J. Agric. Sci. 27, 134–142.

Downloads

Download data is not yet available.

Inne teksty tego samego autora

1 2 > >> 

Podobne artykuły

<< < 22 23 24 25 26 27 28 29 30 31 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.