Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 79 Nr 1 (2024)

Artykuły

Carbon farming and nutrient management. Influential factors of Polish farmers’ perception of pro-climate measures

DOI: https://doi.org/10.24326/as.2024.5324
Przesłane: 9 stycznia 2024
Opublikowane: 07-08-2024

Abstrakt

Carbon farming and nutrient management, a sustainable pro-environmental and pro-climate approach to enhance soil quality and mitigate carbon losses, faces implementation challenges in the European Union. To explore potentially existing barriers, a survey involved 122 Polish farmers, representing diverse systems and land-use. Utilizing structured questionnaires, in-depth interviews,
and Principal Component Analysis, we assessed farmers’ perceptions of six pro-environmental and pro-climate measures. The survey highlighted factors influencing farmers’ willingness to adopt surveyed practices, revealing that the potential to enhance soil carbon and nitrogen stocks outweighed the impact of subsidies, bureaucracy, age, and farm size. Barriers included technical challenges and machinery limitations, notably hindering manure and slurry incorporation. Conservation tillage was considered least feasible nationally, attributed to machinery needs and a preference for conventional practices. Addressing these challenges, especially in conservation tillage, requires targeted education. Raising awareness about measures’ impact on soil carbon stock emerged as a potent means to overcome identified barriers.

Bibliografia

  1. Abdi H., Williams L.J., 2010. Principal component analysis. Wiley Interdiscip. Rev., Comput. Stat. 2(4), 433–459. https://doi.org/10.1002/wics.101 DOI: https://doi.org/10.1002/wics.101
  2. Billen G., Aguilera E., Einarsson R., Garnier J., Gingrich S., Grizzetti B., Lassaletta L., Le Noë J., Sanz-Cobena A., 2024. Beyond the farm to fork strategy. Methodology for designing a European agro-ecological future. Sci. Total Environ. 908, 168160. https://doi.org/10.1016/j.scitotenv.2023.168160 DOI: https://doi.org/10.1016/j.scitotenv.2023.168160
  3. Bumbiere K., Diaz Sanchez F.A., Pubule J., Blumberga D., 2022. Development and assessment of carbon farming solutions. Environ. Climate Technol. 26(1), 898–916. https://doi.org/10.2478/rtuect-2022-0068 DOI: https://doi.org/10.2478/rtuect-2022-0068
  4. Chen L., Sun S., Yao B., Peng Y., Gao C., Qin T., Zhou Y., Sun C., Quan W., 2022. Effects of straw return and straw biochar on soil properties and crop growth: A review. Front. Plant Sci. 13. https://doi.org/10.3389/fpls.2022.986763 DOI: https://doi.org/10.3389/fpls.2022.986763
  5. Cheung A., 2020. Structuredq. In: F. Maggino (ed.), Encyclopedia of quality of life and well-being research. Springer International Publishing, 1–3. https://doi.org/10.1007/978-3-319-69909-7_2888-2 DOI: https://doi.org/10.1007/978-3-319-69909-7_2888-2
  6. Cuadros-Casanova I., Cristiano A., Biancolini D., Cimatti M., Sessa A.A., Mendez Angarita V.Y., Dragonetti C., Pacifici M., Rondinini C., Di Marco M., 2023. Opportunities and challenges for Common Agricultural Policy reform to support the European Green Deal. Conserv. Biol. 37(3), e14052. https://doi.org/https://doi.org/10.1111/cobi.14052 DOI: https://doi.org/10.1111/cobi.14052
  7. Eco-scheme: Carbon Farming and Nutrient Management measures. Retrieved November 15, 2023, https://www.gov.pl/web/rolnictwo/ekoschemat-rolnictwo-weglowe-i-zarzadzanie-skladnikami-odzywczymi [access: 18.06.2023].
  8. Emmerling C., Krein A., Junk J., 2020. Meta-analysis of strategies to reduce NH3 emissions from slurries in European agriculture and consequences for greenhouse gas emissions. Agronomy 10(11). https://doi.org/10.3390/agronomy10111633 DOI: https://doi.org/10.3390/agronomy10111633
  9. Eppich W.J., Gormley G.J., Teunissen P.W., 2019. In-depth interviews. In: D. Nestel, J. Hui, K. Kunkler, M.W. Scerbo, A.W. Calhoun (ed.), Healthcare simulation research. A practical guide. Springer International Publishing, 85–91. https://doi.org/10.1007/978-3-030-26837-4_12 DOI: https://doi.org/10.1007/978-3-030-26837-4_12
  10. European Commission, 2020. A new circular economy action plan. For a cleaner and more competitive Europe. COM(2020) 98.
  11. European Commission, 2021. Communication from the Commission to the European Parliament and the Council. Sustainable Carbon Cycles. COM(2021) 800.
  12. European Commission, 2022. Regulation of the European Parliament and of the Council. Establishing a Union certification framework for carbon removals. COM(2022) 672.
  13. EUROSTAT, 2021. Eurostat Farm Typology Glossary. Retrieved November 19, 2023, https://ec.europa.eu/eurostat/statistics-explained/index.php?oldid=475630 [access: 21.06.2023].
  14. Faichuk O., Voliak L., Hutsol T., Glowacki S., Pantsyr Y., Slobodian S., Szeląg-Sikora A., Gródek-Szostak Z., 2022. European green deal. Threats assessment for agri-food exporting countries to the EU. Sustainability (Switzerland), 14(7). https://doi.org/10.3390/su14073712 DOI: https://doi.org/10.3390/su14073712
  15. Firth A.G., Brooks J.P., Locke M.A., Morin D.J., Brown A., Baker B.H., 2022. Dynamics of soil organic carbon and CO2 flux under cover crop and no-till management in soybean cropping systems of the Mid-South (USA). Environments 9(9). https://doi.org/10.3390/environments9090109 DOI: https://doi.org/10.3390/environments9090109
  16. Han X., Xu C., Dungait J.A.J., Bol R., Wang X., Wu W., Meng F., 2018. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China. A system analysis. Biogeosciences 15(7), 1933–1946. https://doi.org/10.5194/bg-15-1933-2018 DOI: https://doi.org/10.5194/bg-15-1933-2018
  17. Heyl K., Döring T., Garske B., Stubenrauch J., Ekardt F., 2021. The common agricultural policy beyond 2020. A critical review in light of global environmental goals. Rev. Europ. Compar. Intern. Environ. Law 30(1), 95–106. https://doi.org/10.1111/reel.12351 DOI: https://doi.org/10.1111/reel.12351
  18. Hou Y., Velthof G.L., Oenema O., 2015. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains. A meta-analysis and integrated assessment. Glob. Change Biol. 21(3), 1293–1312. https://doi.org/10.1111/gcb.12767 DOI: https://doi.org/10.1111/gcb.12767
  19. Ilakiya T., Swarnapriya R., Pugalendhi L., Geethalakshmi V., Lakshmanan A., Kumar M., Lorenzo J.M., 2023. Carbon accumulation, soil microbial and enzyme activities in elephant foot yambased intercropping system. Agriculture 13(1). https://doi.org/10.3390/agriculture13010187 DOI: https://doi.org/10.3390/agriculture13010187
  20. Jayaraman S., Dang Y.P., Naorem A., Page K.L., Dalal R.C., 2021. Conservation agriculture as a system to enhance ecosystem services. Agriculture 11(8). https://doi.org/10.3390/agriculture11080718 DOI: https://doi.org/10.3390/agriculture11080718
  21. Jayaraman S., Sahu M., Sinha N.K., Mohanty M., Chaudhary R.S., Yadav B., Srivastava L.K., Hati K.M., Patra A.K., Dalal R.C., 2022. Conservation agricultural practices impact on soil organic
  22. carbon, soil aggregation and greenhouse gas emission in a vertisol. Agriculture 12(7). https://doi.org/10.3390/agriculture12071004 DOI: https://doi.org/10.3390/agriculture12071004
  23. Jongeneel R., Gonzalez-Martinez A., 2023. Implementing the EU eco-scheme in the Netherlands. A results-based points system approach. EuroChoices 22(1), 20–27. https://doi.org/10.1111/1746-692X.12388 DOI: https://doi.org/10.1111/1746-692X.12388
  24. Kertész Á., Madarász B., 2014. Conservation agriculture in Europe. Int. Soil Water Conserv. Res. 2(1), 91–96. https://doi.org/10.1016/S2095-6339(15)30016-2 DOI: https://doi.org/10.1016/S2095-6339(15)30016-2
  25. Khangura R., Ferris D., Wagg C., Bowyer J., 2023. Regenerative agriculture. A literature review on the practices and mechanisms used to improve soil health. Sustainability 15(3). https://doi.org/10.3390/su15032338 DOI: https://doi.org/10.3390/su15032338
  26. Lê S., Josse J., Husson F., 2008. FactoMineR: An R package for multivariate analysis. J. Stat. Software 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01 DOI: https://doi.org/10.18637/jss.v025.i01
  27. Leenstra F., Vellinga T., Neijenhuis F., de Buisonjé F., Gollenbeek L., 2019. Manure: a valuable resource. Wageningen: Wageningen UR Livestock Research, pp. 35. http://edepot.wur.nl/294017
  28. Liu Z., Wang D., Ning T., Zhang S., Yang Y., He Z., Li Z., 2017. Sustainability assessment of straw utilization circulation modes based on the emergetic ecological. Ecol. Indic. 75, 1–7. https://doi.org/10.1016/j.ecolind.2016.12.024 DOI: https://doi.org/10.1016/j.ecolind.2016.12.024
  29. Lo Y.-L., Clark C.D., Boyer C.N., Lambert D.M., English B.C., Walker F.R., 2021. Middle and West Tennessee producer perceptions of no-till and cover crops. J. Soil Water Conserv. 76(5), 392–402. https://doi.org/10.2489/jswc.2021.02169 DOI: https://doi.org/10.2489/jswc.2021.02169
  30. Manley J., Van Kooten G.C., Moeltner K., Johnson D.W., 2005. Creating carbon offsets in agriculture through no-till cultivation: A meta-analysis of costs and carbon benefits. Climatic Change 68(1–2), 41–65. https://doi.org/10.1007/s10584-005-6010-4 DOI: https://doi.org/10.1007/s10584-005-6010-4
  31. Pagano M.C., Correa E.J.A., Duarte N.F., Yelikbayev B., O’Donovan A., Gupta V. K., 2017. Advances in eco-efficient agriculture. The plant-soil mycobiome. Agriculture 7(2). https://doi.org/10.3390/agriculture7020014 DOI: https://doi.org/10.3390/agriculture7020014
  32. Petsakos A., Ciaian P., Espinosa M., Perni A., Kremmydas D., 2023. Farm-level impacts of the CAP post-2020 reform. A scenario-based analysis. Appl. Econ. Perspect. Policy 45(2), 1168–1188. https://doi.org/10.1002/aepp.13257 DOI: https://doi.org/10.1002/aepp.13257
  33. Poláková J., Janků J., Holec J., Soukup J., 2023. Soil-water effects of good agricultural and environmental conditions should be weighed in conjunction with carbon farming. Agronomy 13(4). https://doi.org/10.3390/agronomy13041002 DOI: https://doi.org/10.3390/agronomy13041002
  34. Runge T., Latacz-Lohmann U., Schaller L., Todorova K., Daugbjerg C., Termansen M., Liira J., Le Gloux F., Dupraz P., Leppanen J., Prokofieva I., Velazquez F.J.B., 2022. Implementation of Eco-schemes in fifteen European Union member states. EuroChoices 21(2), 19–27. https://doi.org/10.1111/1746-692X.12352 DOI: https://doi.org/10.1111/1746-692X.12352
  35. Schaefer M.V, Bogie N.A., Rath D., Marklein A.R., Garniwan A., Haensel T., Lin Y., Avila C. C., Nico P.S., Scow K.M., Brodie E.L., Riley W.J., Fogel M.L., Berhe A.A., Ghezzehei T.A., Parikh S., Keiluweit M., Ying S.C., 2020. Effect of cover crop on carbon distribution in size and density separated soil aggregates. Soil Systems 4(1). https://doi.org/10.3390/soilsystems4010006 DOI: https://doi.org/10.3390/soilsystems4010006
  36. Sharma M., Kaushal R., Kaushik P., Ramakrishna S., 2021. Carbon farming. Prospects and challenges. Sustainability 13(19). https://doi.org/10.3390/su131911122 DOI: https://doi.org/10.3390/su131911122
  37. Sikora A., 2021. European Green Deal – legal and financial challenges of the climate change. ERA Forum 21(4), 681–697. https://doi.org/10.1007/s12027-020-00637-3 DOI: https://doi.org/10.1007/s12027-020-00637-3
  38. Styburski W., Kozera-Kowalska M., Uglis, J., 2023. Ecoschemes as a new tool to support agriculture. The state of implementation in Poland. Ann. Pol. Assoc. Agric. Agribus. Econ.. https://api.semanticscholar.org/CorpusID:262227707 DOI: https://doi.org/10.5604/01.3001.0053.7749
  39. Su Y., Lv J.L., Yu M., Ma Z.H., Xi H., Kou C.L., He Z.C., Shen A.L., 2020. Long-term decomposed straw return positively affects the soil microbial community. J. Appl. Microbiol. 128(1), 138–150. https://doi.org/10.1111/jam.14435 DOI: https://doi.org/10.1111/jam.14435
  40. Dz.U.2023.412 – Act of February 8, 2023 on the Strategic Plan for the Common Agricultural Policy for 2023–2027 [Ustawa z dnia 8 lutego 2023 r o Planie Strategicznym dla Wspólnej Polityki Rolnej na lata 2023–2027].
  41. Van Hoof S., 2023. Climate change mitigation in agriculture. Barriers to the adoption of carbon farming policies in the EU. Sustainability 15(13). https://doi.org/10.3390/su151310452 DOI: https://doi.org/10.3390/su151310452
  42. Velthof G.L., Kuikman P.J., Oenema O., 2003. Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biol. Fertil. Soils 37(4), 221–230. https://doi.org/10.1007/s00374-003-0589-2 DOI: https://doi.org/10.1007/s00374-003-0589-2
  43. Velthof G.L., Mosquera J., 2011. The impact of slurry application technique on nitrous oxide emission from agricultural soils. Agric. Ecosyst. Environ. 140(1–2), 298–308. https://doi.org/10.1016/J.AGEE.2010.12.017 DOI: https://doi.org/10.1016/j.agee.2010.12.017
  44. Velthof, G., van Schooten, H., & van Dijk, W., 2020. Optimization of the nutrient management of silage maize cropping systems in the netherlands: A review. Agronomy, 10(12). https://doi.org/10.3390/agronomy10121861 DOI: https://doi.org/10.3390/agronomy10121861
  45. Walczak J., Poczta W., Pomianek B., Skowrońska, M., Sadowski A., Izydorczyk K., Frątczak W., 2022. Environmental and climatic consequences of the intensification, scale and concentration of agricultural production. Wydawnictwo Naukowe Scholar. https://doi.org/10.7366/9788367450096
  46. Wang H., Wang S., Yu Q., Zhang Y., Wang R., Li J., Wang X., 2020. No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue-returned farming system. J. Environ. Manag. 261. https://doi.org/10.1016/j.jenvman.2020.110261 DOI: https://doi.org/10.1016/j.jenvman.2020.110261
  47. Wrzaszcz W., 2023. Zielona transformacja polityki rolnej w Unii Europejskiej [The green transformation of agricultural policy in the European Union]. In: Zielone finanse [Green finance].
  48. Komitet Prognoz „Polska 2000 Plus” przy Prezydium PAN, Warszawa, 81–112. http://publikacje.pan.pl/Content/127148/PDF/2021-ZFIN-07.pdf [access: 21.06.2023].

Downloads

Download data is not yet available.