Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 79 Nr 2 (2024)

Artykuły

The influence of biostimulants used in the cultivation of Italian ryegrass (Lolium multiflorum Lam.) on nitrogen uptake and the efficiency of nitrogen fertilization

DOI: https://doi.org/10.24326/as.2024.5341
Przesłane: 12 lutego 2024
Opublikowane: 02-12-2024

Abstrakt

The aim of the study was to determine the effect of different biostimulants applied in the cultivation of Italian ryegrass cv. Dukat on nitrogen uptake and effectiveness of nitrogen fertilisation. A two-year field experiment was arranged as a randomised subblock design (split-plot) with three replicates. The following factors were examined: a) type of biostimulant: Algex, Tytanit, Asahi SL and a control (no biostimulant addition); b) nitrogen application rate: 0 (control), 120 and 180 kg ha–1. The total nitrogen content in the plant material was determined and nitrogen uptake with yield, agricultural and physiological efficiency were calculated. The application of biostimulants increased the nitrogen content in the Italian ryegrass biomass compared to the control. The differences between the tested biostimulants were insignificant. The amount of nitrogen in the biomass was significantly influenced by the rate of nitrogen. The effect of the year of the study was insignificant. The biostimulants used had a significant impact on the total nitrogen uptake during the vegetation year by Italian ryegrass. The values of this parameter depended on the type of biostimulant. Similarly, the value of this parameter was significantly affected by the year of the study, i.e. the total nitrogen uptake was significantly lower in the second year of the study. In the case of the agricultural efficiency fertilisation of Italian ryegrass, no significant differences were found for the influence of the tested experimental factors. The obtained values of the physiological efficiency fertilisation of Italian ryegrass fertilization did not differ significantly in the years of the study.

Bibliografia

  1. Albrizio R., Todorovic M., Matic T., Stellacci A.M., 2010. Comparing the interactive effects of water and nitrogen on durum wheat and barley grown in a Mediterranean environment. Field Crops Res. 115, 179–190. https://doi.org/10.1016/j.fcr.2009.11.003 DOI: https://doi.org/10.1016/j.fcr.2009.11.003
  2. Bashir M.A., Rehim A., Raza Q., Raza H.M.A., Limei Zhai L., Liu H., Wang H., 2021. Biostimulants as plant growth stimulators in modernized agriculture and environmental sustainability. In: Technology in Agriculture. Intech Open, 1–12.
  3. Basile B., Rouphael Y., Colla G., Soppelsa S., Andreotti C., 2020. Appraisal of emerging crop manage-ment opportunities in fruit trees, grapevines and berry crops facilitated by the application of bi-ostimulants. Sci. Hortic. 267, 109330. https://doi.org/10.1016/j.scienta.2020.109330 DOI: https://doi.org/10.1016/j.scienta.2020.109330
  4. Battacharyya D., Babgohari M.Z., Rathor P., Prithiviraj B., 2015. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 196, 39–48. https://doi.org/10.1016/j.scienta.2015.09.012 DOI: https://doi.org/10.1016/j.scienta.2015.09.012
  5. Canellas L.P., Canellas N.O.A., da Silva R.M., Spaccini R., Petroceli Mota G., Olivares F.L., 2023. Biostimulants using humic substances and plant-growth-promoting bacteria: Effects on Cassava (Manihot esculentus) and Okra (Abelmoschus esculentus) yield. Agronomy 13(1), 80. https://doi.org/10.3390/agronomy13010080 DOI: https://doi.org/10.3390/agronomy13010080
  6. Caradonia F., Battaglia V., Righi L., Pascali G., La Torre A., 2019. Plant Biostimulant Regulatory Framework: Prospects in Europe and current situation at international level. J. Plant Growth Regul. 38, 438–448. https://doi.org/10.1007/s00344-018-9853-4 DOI: https://doi.org/10.1007/s00344-018-9853-4
  7. Carillo P., Rouphael Y., 2022. Nitrate uptake and use efficiency: Pros and cons of chloride interference in the vegetable crops. Front. Plant Sci. 13, 899522. https://doi.org/10.3389/fpls.2022.899522 DOI: https://doi.org/10.3389/fpls.2022.899522
  8. Ciepiela G.A., Godlewska A., 2019. The effect of biostimulants derived from various materials on the yielding and selected organic components of Lolium multiflorum Lam. cv. Dukat against the back-ground of nitrogen regime. Appl. Ecol. Environ. Res. 17(5), 12407–12418. https://doi.org/10.15666/aeer/1705_1240712418 DOI: https://doi.org/10.15666/aeer/1705_1240712418
  9. Ciepiela G.A., Jankowska J., Jankowski K., 2012. Efektywność azotu mineralnego i organicznego w nawożeniu runi łąkowej. Fragm. Agron. 9(2), 17–26.
  10. Cozzolino E., Di Mola I., Ottaiano L., Nocerino S., Sifola M.S., El-Nakhel Ch., Rouphael Y., Mori M., 2021. Can seaweed extract improve yield and quality of brewing barley subjected to different levels of nitrogen fertilization?. Agronomy 11, 2481. https://doi.org/10.3390/agronomy11122481 DOI: https://doi.org/10.3390/agronomy11122481
  11. Di Mola I., Cozzolino E., Ottaiano L., Nocerino S., Rouphael Y., Colla G., El-Nakhel C., Mori M., 2020. Nitrogen use and uptake efficiency and crop performance of baby spinach (Spinacia oleracea L.) and Lamb’s Lettuce (Valerianella locusta L.) grown under variable sub-optimal N regimes combined with plant-based biostimulant application. Agronomy 10, 278. https://doi.org/10.3390/agronomy10020278 DOI: https://doi.org/10.3390/agronomy10020278
  12. Du Jardin P., 2015. Plant biostimulants: Definition, concept, main categories and regulation (review). Sci. Hortic. 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021 DOI: https://doi.org/10.1016/j.scienta.2015.09.021
  13. Godlewska A., Ciepiela G.A., 2016. The effect of growth regulator on dry matter yield and some chemi-cal components in selected grass species and cultivars. J. Soil Sci. Plant Nutr. 62, 297–302. https://doi.org/10.1080/00380768.2016.1185741 DOI: https://doi.org/10.1080/00380768.2016.1185741
  14. Godlewska A., Ciepiela G.A., 2017. Effectiveness of fertilization of Dactylis glomerata and Festulolium braunii with nitrogen and the biostimulant Kelpak SL. Rom. Agric. Res. 34, 197–206.
  15. Godlewska A., Ciepiela G.A., 2018. Assessment of the effect of various biostimulants on Medicago × varia T. Martyn yielding and content of selected organic components. Appl. Ecol. Environ. Res. 16(5), 5571–5581. https://doi.org/10.15666/aeer/1605_55715581 DOI: https://doi.org/10.15666/aeer/1605_55715581
  16. Goñi O., Łangowski Ł., Feeney E., Quille P., O’Connell S., 2021. Reducing nitrogen input in barley crops while maintaining yields using an engineered biostimulant derived from Ascophyllum nodosum to enhance nitrogen use efficiency. Front. Plant Sci. 12, 789. https://doi.org/10.3389/fpls.2021.664682 DOI: https://doi.org/10.3389/fpls.2021.664682
  17. Guo J.H., Liu X.J., Zhang Y., Shen J.L., Han W.X., Zhang W.F., Christie P., Goulding K.W.T., Vi-tousek P.M., Zhang F.S., 2010. Significant acidification in major Chinese croplands. Science 327, 1008–1010. https://doi.org/10.1126/science.1182570 DOI: https://doi.org/10.1126/science.1182570
  18. Hassan S.M., Ashour M., Sakai N. Zhang, L. Hassanien H.A., Gaber A., Ammarr G.A.G., 2021. Impact of seaweed liquid extract biostimulant on growth yield, and chemical composition of cucumber (Cu-cumis sativus). Agriculture 11, 320. https://doi.org/10.3390/agriculture11040320 DOI: https://doi.org/10.3390/agriculture11040320
  19. IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, Update 2015. Inter-national Soil Classification System for Naming Soils and Creating Legends for Soil Maps. FAO, Rome, p. 182.World Soil Resources Reports No. 106.
  20. Jankowski K., Sosnowski J., Wilk A., Malinowska E., Wiśniewska-Kadżajan B., 2014. Effect of growth regulators on selected morphological features of yellow pine. J. Ecol. Eng. 15(4), 105–108. https://doi.org/10.12911/22998993.1125464
  21. Joubert J.M., Lefranc G., 2008. Seaweed biostimulants in agriculture: Recent studies on mode of action two types of products from alga: Growth and nutrition stimulants and stimulants of plant Demence reactions. Book of abstracts: Biostimulants in modern agriculture, Warsaw, Poland, 16.
  22. Kabała C., Charzyński P., Chodorowski J., et al., 2019. Polish soil classification, 6th edition – principles, classification scheme and correlations. Soil Sci. Ann. 70, 71–97. DOI: https://doi.org/10.2478/ssa-2019-0009
  23. Kalembasa S., 1995. Use of 15N and 13N isotopes in soil science and agricultural chemistry. WNT Press, Warsaw 1995.
  24. Kamilova F., Okon Y., de Weert S., Hora K., 2014. Commercialization of microbes: manufacturing, inoculation, best practice for objective field testing, and registration. In: B. Lugtenberg (ed.), Princi-ples of plant-microbe interactions, 319–327. DOI: https://doi.org/10.1007/978-3-319-08575-3_33
  25. Kocira S., Szparaga A., Kocira A., Czerwińska E., Wójtowicz A., Bronowicka-Mielniczuk U., Koszel M., Findura P., 2018. Modeling biometric traits, yield and nutritional and antioxidant properties of seeds of three soybean cultivars through the application of biostimulant containing seaweed and ami-no acids. Front. Plant Sci. 9, 388. https://doi.org/10.3389/fpls.2018.00388 DOI: https://doi.org/10.3389/fpls.2018.00388
  26. Kocira A., Lamorska J., Kornas R., Nowosad N., Tomaszewska M., Leszczyńska D., Kozłowicz K., Tabor S., 2020. Changes in biochemistry and yield in response to biostimulants applied in bean (Phaseolus vulgaris L.). Agronomy 10(2), 189. https://doi.org/10.3390/agronomy10020189 DOI: https://doi.org/10.3390/agronomy10020189
  27. Kottek M., Grieser J., Beck C., Rudolf B., Rubel F., 2006. World map of the Köppen-Geiger Climate Classification Updated. Meteorologische Zeitschrift, 15, 259–263. DOI: https://doi.org/10.1127/0941-2948/2006/0130
  28. Kováčik P., Wiśniowska-Kielian B., Smoleń S., 2018. Effect of application of Mg-Tytanit stimulator on winter wheat yielding and quantitative parameters of wheat straw and grain. J. Elem. 23(2), 697–708. https://doi.org/10.5601/jelem.2017.22.2.1461 DOI: https://doi.org/10.5601/jelem.2017.22.2.1461
  29. Kruczek A., 2000. Wpływ wielkości dawki azotu i dolistnego dokarmiania kukurydzy azotem i mikro-elementami na wybrane wskaźniki efektywności nawożenia. Fragm. Agron. 17(3), 5–17.
  30. Lyu S., Wei X., Chen J., Wang C., Wang X., Pan D., 2017. Titanium as a beneficial element for crop production. Front. Plant Sci. 8, 597. https://doi.org/10.3389/fpls.2017.00597 DOI: https://doi.org/10.3389/fpls.2017.00597
  31. Małecka I., Blecharczyk A., 2005. Efektywność nawożenia azotem w różnych systemach uprawy roli. Fragm. Agron. 22(1), 503–511.
  32. Malinowska E., Jankowski K., Kania P., Gałecka M., 2020. The effect on tytanit foliar application on the yield and nutritional value of Festulolium braunii. Agronomy 10(6), 848. https://doi.org/10.3390/agronomy10060848 DOI: https://doi.org/10.3390/agronomy10060848
  33. Marino M.A., Mazzanti A., Assuero S.G., Gastal F., Echeverria H.E., Andrade F., 2004. Nitrogen dilu-tion curves and nitrogen use efficiency during winter-spring growth of annual ryegrass. Agron. J. 96, 601–607. DOI: https://doi.org/10.2134/agronj2004.0601
  34. Murawska B., Gabrowska M., Spychaj-Fabisiak E., Wszelaczyńska E., Chmielewski J., 2017. Produc-tion and environmental aspects of the application of biostimulators Asahi SL, Kelpak SL and stimu-lator Tytanit with limited doses of nitrogen. Environ. Protect. Nat. Res. 28(4), 10–15. https://doi.org/10.1515/oszn-2017-0024 DOI: https://doi.org/10.1515/oszn-2017-0024
  35. Pacholczak A., Szydło W., Petelewicz P., Szulczyk K., 2013. The effect of Algaminoplant on rhizogene-sis in stem cuttings of Physocarpus opulifolius ‘Dart’s Gold’ and ‘Red Baron’. Acta Sci. Pol. Hort. Cult. 12(3), 12.
  36. Pačuta V., Rašovský M., Michalska-Klimczak B., Wyszyński Z., 2021. Grain yield and quality traits of durum wheat (Triticum durum Desf.) treated with seaweed- and humic acid-based biostimulants. Agronomy 11, 1270. https://doi.org/10.3390/agronomy11071270 DOI: https://doi.org/10.3390/agronomy11071270
  37. Przybysz A. Gawrońska H., Gajc-Wolska J., 2014. Biological mode of action of a nitrophenolates-based biostimulant: case study. Front. Plant Sci. 5, 713. https://doi.org/10.3389/fpls.2014.00713 DOI: https://doi.org/10.3389/fpls.2014.00713
  38. Przybysz A., Wrochna M., Słowiński A., Gawrońska H., 2010. Stimulatory effect of Asahi SL on se-lected plant species. Acta Sci. Pol. Hort. Cult. 9(2), 53–64.
  39. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32019R1009 [access:07.03.2023].
  40. Renuka N., Guldhe A., Prasanna R., Singh P., Bux F., 2018. Microalgae as multifunctional options in modern agriculture: current trends, prospects and challenges. Biotechnol. Adv. 6, 1255–1273. https://doi.org/10.1016/j.biotechadv.2018.04.004 DOI: https://doi.org/10.1016/j.biotechadv.2018.04.004
  41. Soppelsa S., Kelderer M., Casera C., Bassi M., Robatscher P., Matteazzi A., Andreotti C., 2019. Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown un-der nutrient limitation. Agronomy 9, 483. https://doi.org/10.3390/agronomy9090483 DOI: https://doi.org/10.3390/agronomy9090483
  42. Stamatiadis S., Evangelou E., Jamois F., Yvin J.C., 2021. Targeting Ascophyllum nodosum (L.) Le Jol. extract application at five growth stages of winter wheat. J. Appl. Phycol. 33, 1873–1882. https://doi.org/10.1007/s10811-021-02417-z DOI: https://doi.org/10.1007/s10811-021-02417-z
  43. Szabo V., Sarvari A., Hrotko K., 2011. Treatment of Stockplants with biostimulators and their effects on cutting propagation of prunus Marianna GF8-1. Acta Hortic. 923, 277–282. DOI: https://doi.org/10.17660/ActaHortic.2011.923.41
  44. Szczepanek M., Jaśkiewicz B., Kotwica K., 2018. Response of barley on seaweed biostimulant applica-tion. Res. Rural Dev. 2, 49–54. https://doi.org/10.22616/rrd.24.2018.050 DOI: https://doi.org/10.22616/rrd.24.2018.050
  45. Szparaga A., Kocira S., Kocira A., Czerwińska E., Świeca M., Lorencowicz E., Kornas R., Koszel M., Oniszczuk T., 2018. Modification of growth, yield, and the nutraceutical and antioxidative potential of soybean through the use of synthetic biostimulants. Front. Plant Sci. 9, 1401. https://doi.org/10.3389/fpls.2018.01401 DOI: https://doi.org/10.3389/fpls.2018.01401
  46. Świerczyński S., Antonowicz A., Bykowska J., 2021. The effect of the foliar application of biostimulants and fertilisers on the growth and physiological parameters of maiden apple trees cultivated with lim-ited mineral fertilisation. Agronomy 11, 1216. https://doi.org/10.3390/agronomy11061216 DOI: https://doi.org/10.3390/agronomy11061216
  47. Świtoniak M., Kabała C., Charzyński P., 2016. Proposal of English equivalents for the soil taxa names in the Polish Soils Classification. Soil Sci. Ann. 67, 103–116. DOI: https://doi.org/10.1515/ssa-2016-0013
  48. Thomas L., Singh I., 2019. Microbial biofertilizers: types and applications. Soil Biol. 55, 1–19. https://doi.org/10.1007/978-3-030-18933-4_1 DOI: https://doi.org/10.1007/978-3-030-18933-4_1
  49. Wuang S.C., Khin M.C., Chua P.Q.D., Luo Y.D., 2016. Use of spirulina biomass produced from treat-ment of aquaculture waste water as agricultural fertilizers. Algal Res. 15, 59–64. https://doi.org/10.1016/j.algal.2016.02.009 DOI: https://doi.org/10.1016/j.algal.2016.02.009
  50. Zotarelli L., Scholberg J.M., Dukes M.D., Muñoz Carpena R., 2008. Fertilizer residence time affects nitrogen uptake efficiency and growth of sweet corn. J. Environ. Qualal. 37, 1271–1278. https://doi.org/10.2134/jeq2007.0460 DOI: https://doi.org/10.2134/jeq2007.0460

Downloads

Download data is not yet available.

Inne teksty tego samego autora