Abstrakt
Soil compaction is a crucial agricultural issue impacting plant growth, water infiltration, and soil health. Because of its sensitivity to soil variables such as texture, moisture content, and salinity, soil electrical conductivity (ECa) has emerged as a promising indirect predictor of soil compaction. This review summarizes selected studies on the relationship between soil compaction and apparent electrical conductivity and examines various prediction approaches. It also considers the potential applications and limitations of using ECa to estimate soil compaction, including methods based on machine learning. Future advancements in technology, modeling, and data integration will be key to fully realizing the potential of ECa in soil compaction management.
Bibliografia
- Abbaspour-Gilandeh A., Khalilian F.H., 2011. Use of soil EC data for zoning the production field by artificial neural network for applying the precision tillage. J. Agr. Machinery Sci. 7(1), 27–31.
- Abdulraheem M., Zhang W., Li S., Moshayedi A., Farooque A., Hu J., 2023. Advancement of remote sensing for soil measurements and applications: A comprehensive review. Sustainability 15(21), 15444. https://doi.org/10.3390/su152115444
- Adamchuk V., 2015. Soil technology comparison. Grid Sampling vs. Electrical Conductivity vs. SoilOptix®. Ontario Ministry of Agriculture, Food and Rural Affairs, https://soiloptix.com/wp-content/uploads/2021/11/SoilOptix-Technology-Comparison-Study.pdf [access: 20.11.2024]
- Adhikari K., Carre F., Toth G., Montanarella L., 2009. Site Specific Land Management: General Concepts and Applications. EUR 23978 EN. European Commission, JRC53692.
- Bache B., Chesworth W., Chesworth W., Gessa C., Lewis D.T., 2008. Bulk density. In: W. Ches-worth (ed.), Encyclopedia of soil science. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3995-9_80
- Barbosa R., Overstreet C., 2022. What is soil electrical conductivity? LSU AgCenter Pub.
- 3185, https://www.lsuagcenter.com/nr/rdonlyres/e57e82a0-3b99-4dee-99b5-cf2ad7c43aef/77101/pub3185whatissoilelectricalconductivityhighres.pdf [access: 4.15.2024].
- Ben-Dor E., Chabrillat S., Demattê J., Taylor G., Hill J., Whiting M., Sommer S., 2009. Using Imaging Spectroscopy to study soil properties. Remote Sens. Environ. 113, 38–55. https://doi.org/10.1016/j.rse.2008.09.019
- Brogi C., Huisman J., Herbst M., Weihermüller L., Klosterhalfen A., Montzka C., Reichenau T.G., Vereecken H., 2020. Simulation of spatial variability in crop leaf area index and yield using agroecosystem modeling and geophysics-based quantitative soil information. Vadose Zone J. 19, e20009. https://doi.org/10.1002/uar2.20009
- Corwin D., Lesch S., 2003. Application of soil electrical conductivity to precision agriculture: Theo-ry, principles, and guidelines. Agron. J. 95, 455–471.
- Corwin D., Lesch S., 2005. Apparent soil electrical conductivity measurements in agriculture. Comp. Electron. Agric. 46, 11–43. https://doi.org/10.1016/j.compag.2004.10.005
- De Feudis C., Ferré C., Comolli R., 2025. Practical insights for ECa-based soil mapping: Case studies in croplands and vineyards. Smart Agric. Technol. 10, 100697. https://doi.org/10.1016/j.atech.2024.100697.
- Deng X., Gu H., Yang L., Lyu H., Cheng Y., Pan L., Fu Z., Cui L., Zhang L., 2020. A method of electrical conductivity compensation in a low-cost soil moisture sensing measurement based on capacitance. Measurement 150, 107052. https://doi.org/10.1016/j.measurement.2019.107052
- Ding J., Yang S., Shi Q., Wei Y., Wang F., 2020. Using apparent electrical conductivity as an indi-cator for investigating potential spatial variation of soil salinity across seven oases along Tarim River in Southern Xinjiang, China. Remote Sens. 12(16), 2601. https://doi.org/10.3390/rs12162601
- Dexter A.R., 2004. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120, 201–214. https://doi.org/10.1016/j.geoderma.2003.09.004.
- Duiker S.W., 2005. Effects of soil compaction. College of Agricultural Sciences. Agricultural Re-search and Cooperative Extension. https://extension.psu.edu/effects-of-soil-compaction [access: 19.10.2024].
- Ebrahimzadeh G., Mahabadi N., Bayat H., MatinFar H., 2023. Estimating pre-compression stress in agricultural soils: Integrating spectral indices and soil properties through machine learning. Comp. Electron. Agric. 215. https://doi.org/10.1016/j.compag.2023.108393
- Friedman S., 2005. Soil properties influencing apparent electrical conductivity: a review. Comp. Electron. Agric. 46, 45–70. https://doi.org/10.1016/j.compag.2004.11.001
- Galambosová J., Macák M., Rataj V., Barát M., Misiewicz P., 2020. Determining trafficked areas using soil electrical conductivity – a pilot study. Acta Technol. Agric. 23, 1–6. https://doi.org/10.2478/ata-2020-0001
- Ghazali M.F., Wikantika K., Harto A.B., Kondoh A., 2020. Generating soil salinity, soil moisture, soil pH from satellite imagery and its analysis. Inf. Process. Agric. 7(2), 294–306. https://doi.org/https://doi.org/10.1016/j.inpa.2019.08.003
- Grisso R.D., Alley M.M., Holshouser D.L., Thomason W.E., 2005. Precision farming tools. Soil electrical conductivity. Virginia Cooperative Extension 442–508, https://www.researchgate.net/publication/285309866_Precision_Farming_Tools_Soil_Electrical_Conductivity_Virginia_Cooperative_Extension [access: 19.10.2024].
- Hara P., Piekutowska M., Niedbała G., 2023. Prediction of pea (Pisum sativum L.) seeds yield using artificial neural networks. Agriculture 13(3), 661. https://doi.org/10.3390/agriculture13030661
- Heil K., Schmidhalter U., 2017. The Application of EM38: Determination of soil parameters, selec-tion of soil sampling points and use in agriculture and archaeology. Sensors 17(11), 2540. https://doi.org/10.3390/s17112540
- Hemmat A., Adamchuk V., 2008. Sensor systems for measuring soil compaction: Review and analysis. Comp. Electron. Agric. 63, 89–103. https://doi.org/10.1016/j.compag.2008.03.001
- Hoorman J., de Moraes Sá J.C., Reeder R., 2009. The biology of soil compaction. Agriculture and Natural Resources. https://ohioline.osu.edu/factsheet/SAG-10 [access: 4.15.2024].
- Hu W., Drewry J., Beare M., Eger A., Muller K., 2021. Compaction induced soil structural degrada-tion affects productivity and environmental outcomes: A review and New Zealand case study. Geoderma 395, 115035. https://doi.org/10.1016/j.geoderma.2021.115035
- Jeschke M., Lutt N., 2018. Soil compaction in agricultural production. Pioneer, https://www.pioneer.com/us/agronomy/soil-compaction-ag-production.html [access: 4.15.2024].
- Korsaeth A., 2005. Soil apparent electrical conductivity (ECa) as a means of monitoring changes in soil inorganic N on heterogeneous morainic soils in SE Norway during two growing seasons. Nutr. Cycl. Agroecosyst. 72, 213–227. https://doi.org/10.1007/s10705-005-1668-6
- Kumar P., Kumar P., Shukla A., 2021. Spatial modeling of some selected soil nutrients using geosta-tistical approach for Jhandutta Block (Bilaspur District), Himachal Pradesh, India. Agric. Res. 10, 262–273. https://doi.org/10.1007/s40003-020-00494-z
- Lund E.D., 2008. Soil electrical conductivity. In: C.D. Logsdon S., Moore D., Tsegaye T. (ed.), Soil science step‐by‐step field analysis. Soil Science Society of America, Inc., 137–146.
- Maharjan G.R., Prescher A., Nendel C., Ewert F., Mboh C.M., Gaiser T., Sabine S.J., 2018.
- Approaches to model the impact of tillage implements on soil physical and nutrient
- properties in different agro-ecosystem models. Soil Till. Res. 180, 210–221. https://doi.org/10.1016/j.still.2018.03.009.
- McKenzie R.H., 2010. Agricultural soil compaction: causes and management. Agrifacts. https://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex13331/$file/510-1.pdf [ac-cessed on 4.15.2024].
- McNeill J.D., 1980. Electromagnetic terrain conductivity at low induction numbers. Technical Note TN-6 G. Limited, Ontario, Canada.
- McNeill J.D., 1992. Rapid, accurate mapping of soil-salinity by electromagnetic ground conductivity meters. In: Advances in measurement of soil physical properties: bringing theory into practice. 209–229. Wiley. https://doi.org/10.2136/sssaspecpub30
- Naderi-Boldaji M., Alimardani R., Hemmat A., Sharifi A., Keyhani A., Tekeste M.Z., Keller T., 2013. 3D finite element simulation of a single-tip horizontal penetrometer-soil interaction. Part I: Development of the model and evaluation of the model parameters. Soil Till. Res. 134, 153–162. https://doi.org/10.1016/j.still.2013.08.002
- Nawaz M.F., Bourrie G., Trolard F., 2013. Soil compaction impact and modelling. A review. Agron. Sustain. Dev. 33(2), 291–309. https://doi.org/10.1007/s13593-011-0071-8
- Niedbała G., 2019. Application of artificial neural networks for multi-criteria yield prediction of winter rapeseed. Sustainability 11(2), 533. https://doi.org/10.3390/su11020533
- Nogués J., Robinson D., Herrero J., 2006. Incorporating electromagnetic induction methods into regional soil salinity survey of irrigation districts. Soil Sci. Soc. Am. J. 70, 2075–2085. https://doi.org/10.2136/sssaj2005.0405
- Othaman N.N.C., Isa M.N.M., Hussin R., Ismail R.C., Naziri S.Z.M., Murad S.A.Z., Harun A., Ahmad M.I., 2021. Development of soil electrical conductivity (EC) sensing system in paddy field. J. Phys.: Conf. Ser. 1755, 012005. https://doi.org/10.1088/1742-6596/1755/1/012005
- Parent E., Parent S., Parent L., 2021. Determining soil particle-size distribution from infrared spectra using machine learning predictions: Methodology and modeling. Plos One 17(8), e0233242. https://doi.org/10.1371/journal.pone.0233242
- Pathirana S., Lambot S., Krishnapillai M., Cheema M., Smeaton C., Galagedara L., 2024. Integrated ground-penetrating radar and electromagnetic induction offer a non-destructive approach to pre-dict soil bulk density in boreal podzolic soil. Geoderma 450, 117028. https://doi.org/10.1016/j.geoderma.2024.117028
- Pentoś K., Mbah J.T., Pieczarka K., Niedbała G., Wojciechowski T., 2022. Evaluation of multiple linear regression and machine learning approaches to predict soil compaction and shear stress based on electrical parameters. Appl. Sci. 12(17). https://doi.org/10.3390/app12178791
- Pentoś K., Pieczarka K., Lejman K., 2020. Application of soft computing techniques for the analysis of tractive properties of a low-power agricultural tractor under various soil conditions. Com-plexity 2020, 7607545. https://doi.org/10.1155/2020/7607545
- Peralta G., Alvarez C., Taboada M., 2021. Soil compaction alleviation by deep non-inversion tillage and crop yield responses in no-tilled soils of the Pampas region of Argentina. A meta-analysis. Soil Till. Res. 211, 105022. https://doi.org/10.1016/j.still.2021.105022
- Piekutowska M., Niedbała G., Piskier T., Lenartowicz T., Pilarski K., Wojciechowski T., Pilarska A.A., Czechowska-Kosacka A., 2021. The application of multiple linear regression and artifi-cial neural network models for yield prediction of very early potato cultivars before harvest. Agronomy 11(5), 885. https://doi.org/10.3390/agronomy11050885
- Peterson B.M., Mathur S., Osmer P.S., Vestergaard M., 2003. Quasars. In: Encyclopedia of physi-cal science and technology (third ed.), Academic Press, 465–480. https://doi.org/10.1016/B0-12-227410-5/00629-3
- Sanches G. M., Faria H. M., Otto R., Neto A. S., Corá, J. E., 2025. using soil apparent electrical conductivity (eca) to assess responsiveness of nitrogen rates and yield in Brazilian sugarcane fields. Agronomy 15(3), 606. https://doi.org/10.3390/agronomy15030606
- Silva S., de Barros N., de Novais R., Comerford N., 2018. Eucalyptus growth and phosphorus nutritional efficiency as affected by soil compaction and phosphorus fertilization. Commun. Soil Sci. Plant Anal. 49, 2700–2714. https://doi.org/10.1080/00103624.2018.1538372
- Siqueira G.M., Dafonte J.D., Bueno Lema J., Valcárcel Armesto M., Silva Ê., 2014. using soil apparent electrical conductivity to optimize sampling of soil penetration resistance and to im-prove the estimations of spatial patterns of soil compaction. Sci. World J. 1, 269480. https://doi.org/10.1155/2014/269480
- Su A., Adamchuk V., 2023. Temporal and operation-induced instability of apparent soil electrical conductivity measurements. Front. Soil Sci. 3. https://doi.org/10.3389/fsoil.2023.1137731
- Sudduth K., Kitchen N., Wiebold W., Batchelor W., Bollero G., Bullock D., Clay D., Palm H.L., Pierce F.J., Schuler R.T., Thelen K.D., 2005. Relating apparent electrical conductivity to soil properties across the north-central USA. Comp. Electron. Agric. 46, 263–283.
- Tekin A., Yalçin H., 2019. Design and development of a front-mounted on-the-go soil strength profile sensor. Turkish J. Agric. Forest. 43, 151–163. https://doi.org/10.3906/tar-1803-64
- Trinks I., Pregesbauer M., 2016. Efficient mapping of agricultural soils using a novel electromagnet-ic measurement system. Conference: EGU. At: X1.169, vol. 18.
- van den Akker J.J.H., ten Damme L., Lamandé M., Keller T., 2023. Compaction. In: Encyclopedia of soils in the environment (second ed.). Academic Press, 85–99. https://doi.org/10.1016/B978-0-12-822974-3.00225-1
- Vaz C.M.P., 2003. Use of a combined penetrometer-TDR moisture probe for soil compaction stud-ies. College on Soil Physics, https://www.osti.gov/etdeweb/servlets/purl/20946976 [access: 19.10.2024]
- Vrindts E., Mouazen A.M., Reyniers M., Maertens K., Maleki M.R., Ramon H., De Baerdemaeker J., 2005. Management zones based on correlation between soil compaction, yield and crop data. Biosyst. Eng. 92(4), 419–428. https://doi.org/10.1016/j.biosystemseng.2005.08.010
- Yue L.K., Wang Y., Wang L., Yao S.H., Cong C., Ren L.D., Zhang B., 2021. Impacts of soil com-paction and historical soybean variety growth on soil macropore structure. Soil Till. Res. 214, 105166. https://doi.org/10.1016/j.still.2021.105166
Downloads
Download data is not yet available.
-
Wiesław Szulc,
Beata Rutkowska,
Jan Łabętowicz,
Zawartość siarki ogólnej, organicznej i siarczanowej w profilu glebowym w warunkach różnych systemów uprawy gleby
,
Agronomy Science: Tom 59 Nr 1 (2004)
-
Jan Kossowski,
Józef Kołodziej,
Szacowanie średnich dobowych wartości temperatury w warstwie ornej gleby na podstawie temperatury powietrza i wilgotności gleby
,
Agronomy Science: Tom 58 (2003)
-
JACEK JULIAN PRANAGAL,
DOROTA TOMASZEWSKA-KROJAŃSKA,
HALINA SMAL,
SŁAWOMIR LIGĘZA,
Wpływ aplikacji wybranych odpadów na zagęszczenie gleby
,
Agronomy Science: Tom 74 Nr 3 (2019)
-
Halina Jankowska-Huflejt,
Analiza plonowania i zmian składu botanicznego runi łąkowej pod wpływem dokarmiania azotem dolistnie i doglebowo
,
Agronomy Science: Tom 61 (2006)
-
Maja Bryk,
Anna Słowińska-Jurkiewicz,
Beata Kołodziej,
Changes of pore orientation in soil lessive caused by tillage measures
,
Agronomy Science: Tom 60 (2005)
-
DANICA FAZEKAŠOVÁ,
EVA MICHAELI,
STANISLAW BARAN,
JANA CHOVANCOVÁ,
STANISLAV TORMA,
The quality and health of soil in terms of sustainable land use
,
Agronomy Science: Tom 69 Nr 3 (2014)
-
Jan Łabętowicz,
Beata Rutkowska,
Wiesław Szulc,
Tomasz Sosulski,
Ocena wpływu wapnowania oraz gipsowania na zawartość glinu wymiennego w glebie lekkiej
,
Agronomy Science: Tom 59 Nr 2 (2004)
-
Wiesław Wojciechowski,
Kształtowanie właściwości fizycznych gleby lekkiej w płodozmianach uproszczonych z różnym udziałem ziemniaka
,
Agronomy Science: Tom 59 Nr 3 (2004)
-
Anna Jaroszewska,
Sławomir Stankowski,
Tomasz Tomaszewicz,
Marzena Gibczyńska,
Analysis of the multi-annual effect of tillage systems and forecrops on texture and physical properties of soil
,
Agronomy Science: Tom 79 Nr 2 (2024)
-
Stanisław Włodek,
Andrzej Biskupski,
Jan Pabin,
Modelowe badania wpływu zagęszczenia gleby na gospodarkę wodną warstwy uprawnej
,
Agronomy Science: Tom 59 Nr 2 (2004)
1 2 3 4 5 6 7 8 9 10 > >>
Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.