Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 80 No. 2 (2025)

Articles

Heavy metal content in the soil and their phytoremediation by Isopyrum thalictroides L. populations in woodland habitats

DOI: https://doi.org/10.24326/as.2025.5513
Submitted: March 13, 2025
Published: 08.09.2025

Abstract

The research was conducted in early spring in 2021 and 2022 on four populations of Isopyrum thalictroides. The first one grew in an unpolluted natural forest complex, the other three in small mid-field forest islands. The aim of the research was to assess the content of heavy metals (Fe, Mn, Cd, Pb, Cr, Zn, Ni) in the soil and their phytoaccumulation in Isopyrum thalictroides populations occurring in oak-hornbeam habitats with varying intensity of agricultural anthropopression. Plant and soil samples were taken from each site. The content of heavy metals was determined using the optical emission spectrometry method (ICP-OES). The accumulation index was calculated and the SPAD leaf greenness index measurements were analyzed. Based on the research, it can be concluded that the content of metals in plants and soil was varied and depended on the site occupied. The lowest concentration was recorded in plant samples from the compact forest complex, and significantly higher in plant samples taken from the mid-field islands. Similarly, the content of metals in the soil was the lowest in the sample from the forest complex, and higher in samples from the mid-field forest islands. Isopyrum thalictroides accumulates Fe to a moderate degree, and Zn to an intensive degree at all sites. In relation to Mn, Pb, Cr and Ni, it shows an intensive degree of accumulation at site 2 (mid-field island), and average at the remaining sites. On the other hand, the SPAD leaf greenness index was the lowest for the compact forest complex, and significantly higher for the mid-field islands, i.e. better plant nutrition with nitrogen, which indicates the penetration of N compounds into the soils of the mid-field islands. The conducted studies indicate the agricultural origin of increased heavy metal contents in the soil of mid-field forest islands and the possibility of using Isopyrum thalictroides as a bioindicator to assess the degree of heavy metal contamination of oak-hornbeam habitats.

References

  1. Anjum S.A., Tanveer M., Hussain S., Bao M., Wang L.C., Khan I., Ullah E., Tung S.A., Samad R.A., Shahzad B., 2015a. Cadmium toxicity in Maize (Zea mays L.): consequences on antioxi-dative systems, reactive oxygen species and cadmium accumulation. Environ. Sci. Pollut. Res. 22(21), 17022–17030. https://doi.org/10.1007/s11356-015-4882-z
  2. Anjum S.A, Tanveer M., Hussain S., Ehsanullah Wang L.C., Khan I., Samad R.A., Tung S.A., Anam M., Shahzad B., 2015b. Morphophysiological growth and yield responses of two con-trasting maize cultivars to cadmium exposure. Clean Soil Air Water 44(1), 29–36.
  3. Anjum S.A., Tanveer M., Hussain S., Shahzad B., Ashraf U., Fahad S., Hassan W., Jan S., Khan I., Saleem M.F., Bajwa A.A., Wang L., Mahmood A., Samad R.A., Tung S.A., 2016. Osmoregu-lation and antioxidant production in maize under combined cadmium and arsenic stress. Envi-ron. Sci. Pollut. Res. 23(12), 11864–11875. https://doi.org/10.1007/s11356-016-6382-1
  4. Balakhnina T.I., Borkowska A., Nosalewicz M., Nosalewicz A., Włodarczyk T.M., Kosobryukhov A.A., Fomina I.R., 2016. Effect of temperature on oxidative stress induced by lead in the leaves of Plantago major L. Inter. Agrophys. 30, 285–292. https://doi.org/10.1515/intag-2015-0094.
  5. Bărăscu N., Duda M.M., Olteanu G., 2016. Study of dynamics SPAD and NDVI values of potato plants according to the differentiated fertilization. Bull. UASVM, Agriculture 73(1), 5–14. https://doi.org/10.15835/buasvmcn-agr:12003.
  6. Cetner M., Dąbrowski P., Samborska I., Łukasik I., Swoczyna T., Pietkiewicz S., Kalaji H., 2016. Zastosowanie pomiarów fluorescencji chlorofilu w badaniach środowiskowych. Kosmos 65(2), 197–205.
  7. Chassel D., 1977. La description nom paramètrique de la dispersionspatiale des indyviduals d’uneespece. J. Franc. Biom., 28 april, 68.
  8. Datcu A.D., Sala F., Ianovici N., 2017. Studies regarding some morphometric and biomass alloca-tion parameters in the urban habitat on Plantago major. Res. J. Agric. Sci. 49(4), 96–102. https://rjas.ro/paper_detail/2486
  9. Galal T.M., Shehata H.S., 2015. Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol. Indicat. 48, 244–251. https://doi.org/10.1016/j.ecolind.2014.08.013
  10. Głodowska M., Gałązka A., 2018. Intensyfikacja rolnictwa a środowisko naturalne. Zesz. Prob. Post. Nauk Rol. 592, 3–13. https://doi.org/10.22630/ZPPNR.2018.592.1
  11. Gorlach E., Gambuś F., 1997. Nawozy fosforowe i wieloskładnikowe jako źródło zanieczyszczenia gleby metalami ciężkimi. Zesz. Probl. Post. Nauk Rol. 448, 139–146.
  12. Huber M.A., Menshakova M.Y., Chmiel S., Zhigunova G.V., Dębicki R., Iakovleva O.A., 2018. Heavy metal composition in the Plantago major L. from center of the Murmansk City, Kola Peninsula, Russia. Eur. J. Biol. Res. 8(4), 214–223. https://doi.org/10.5281/zenodo.1461064
  13. Jakubowska-Gabara J., 2011. Nowe stanowiska rzadkich, chronionych i zagrożonych gatunków roślin naczyniowych w Polsce środkowej. Wyd. Uniwersytetu Łódzkiego, Łódź.
  14. Kabata-Pendias A., Pendias H., 1993. Biogeochemia pierwiastków śladowych. Wyd. Nauk. PWN, Warszawa.
  15. Kabata-Pendias A., Pendias H., 1999. Biogeochemia pierwiastków śladowych, wyd. 2 zm. PWN, Warszawa
  16. Kandziora-Ciupa M., Nadgórska-Socha A., Barczyk G., Ciepał R., 2017. Bioaccumulation of heavy metals and ecophysiological responses to heavy metal stress in selected populations of Vaccinium myrtillus L. and Vaccinium vitis-idaea L. Ecotoxicology 26, 966–980. https://doi.org/10.1007/s10646-017-1825-0
  17. Kondracki J., 2002. Geografia regionalna Polski. Wyd. Nauk. PWN, Warszawa.
  18. Krełowska-Kułas M., 2001. Chemiczne zanieczyszczenia żywności. Zesz. Nauk. Akad. Ekon. Krak. 572.
  19. Kwapuliński J., Michalewska A., Rochel R., Kowol J., 2005. Intoksykacja surowców roślin leczniczych metalami ciężkimi w świetle obowiązujących uregulowań ustawodawczych oraz zaleceń WHO. Probl. Ekol. 9(4), 202–204.
  20. Matuszkiewicz W., 2001. Przewodnik do oznaczania zbiorowisk roślinnych Polski. Vademecum Geobotanikum, PWN, Warszawa.
  21. Nasr M., Arp P.A., 2015. Biomonitoring and assessing total mercury concentrations and pools in forested areas. Biomonitoring 2, 47–63. https://doi.org/10.1515/bimo-2015-0008
  22. Ociepa E., Pachura P., Ociepa-Kubicka A., 2014. Wpływ niekonwencjonalnego nawożenia na migrację metali ciężkich w układzie gleba-roślina. Inż. Ochr. Środ. 17(2), 325–338.
  23. Parzych A., 2014. Zawartość wybranych metali ciężkich w glebie i pędach Vaccinium myrtillus L. w Słowińskim Parku Narodowym. Leśne Pr. Bad. 75(3), 217–224. https://doi.org/10.2478/frp-2014-0020
  24. Pieczka M., Świsłowski P., Rajfur M., 2019. Zanieczyszczenie metalami ciężkimi Matricaria chamomilla L. i Plantago lanceolata L. Proc. ECOpole 13(1), 135–145. https://doi.org/10.2429/proc.2019.13(1)014
  25. Polechońska M., Zawadzki K., Samecka-Cymerman A., Kolon K., Klink A., Krawczyk J., Kempers A.J., 2013. Evaluation of the bioindicator suitability of Polygonum aviculare in urban areas. Ecol. Indicat. 24, 552–556. https://doi.org/10.1016/j.ecolind.2012.08.012
  26. Reimann C., Koller F., Kashulina G., Niskavaara H., Englmaier P., 2001. Influence of extreme pollution on the inorganic chemical composition of some plants. Environ. Poll 115, 239–252.
  27. Rozporządzenie Ministra Środowiska z dnia 19 lipca 2016 r. w sprawie sposobu prowadzenia oceny zanieczyszczenia powierzchni ziemi [Dz.U. z 2016 r., poz. 1395].
  28. Siebielec G., Smreczak B., Klimkowicz-Pawlas A., Maliszewska-Kordybach B., Terelak H., Koza P., Hryńczuk B., Łysiak M., Miturski T., Gałązka R., Suszek B., 2012. Monitoring chemizmu gleb ornych w Polsce w latach 2010–2012. IUNG Puławy, s. 105–179.
  29. Stefanowicz A.M., Stanek M., Woch M.W., 2016. High concentrations of heavy metals in beech forest understory plants growing on waste heaps left by Zn-Pb ore mining. J. Geochem. Explor. 169, 157–162.
  30. Stempin M., Kwapuliński J., Brodziak B., Trzcionka J., Ahnert B., 2002. Ocena kontaminacji roślin metalami na terenach miedzionośnych. Bromat. Chem. Toksykol. 35(3), 275–282.
  31. Talukdar P., Dutt A., 2018. Biomonitoring with special reference to leaf and pollen morphology in Cassia sophera L. to detect roadside air pollution. World Sci. News. 105, 168–181. http://psjd.icm.edu.pl/psjd/element/bwmeta1.element.psjd-e5e9d3e4-3414-4ba7-8247-03c2fe098381?printView=true
  32. Wach D., 2015. Metody oceny stanu odżywienia roślin. St. Rap. IUNG-PIB, 42(16), 53–68. https://doi.org/10.26114/sir.iung.2015.42.2
  33. Wadas W., Kalinowski K., 2017. Effect of titanium on assimilation leaf area and chlorophyll content of very early maturing potato cultivars. Acta Sci. Pol. Agric. A 16(2), 87–98.
  34. Wahono L., Didik I., Bambang H.S., Eko H., Djoko P., 2021. Comparing visible light based vegeta-tion index and chlorophyll meter to estimate chlorophyll and nitrogen content of tea (Camellia sinensis L. Kuntze). An. R.S.C.B. 25(1), 5033–5043.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.