Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 80 No. 4 (2025)

Articles

Obtaining and characterizing of Aegilops triuncialis L. × Triticum aestivum L. hybrids

DOI: https://doi.org/10.24326/as.2025.5576
Submitted: July 28, 2025
Published: 31.12.2025

Abstract

Field crosses were performed between Aegilops triuncialis L. (2n = 4x = 28, UUCC genomes) and the common wheat cultivars Triticum aestivum L. (2n = 6x = 42, AABBDD genomes) Begra, Monopol, Nawra, and Zyta. The aim of the crosses was to expand the genetic variability of common wheat. The interbreeding ability of tested genotypes under field conditions ranged from 7.14% (Ae. triuncialis × Zyta) to 13.33% (Ae. triuncialis × Monopol). Hybrid kernels were formed only when the maternal form was Ae. triuncialis. From obtained 22 F1 hybrid kernels, 19 embryos were isolated in vitro and plated on MS medium supplemented with 10 mg dm–3 IAA (β-indolyl-3-acetic acid) and 0.04 mg dm–3 kinetin. F1 embryos developed into 15 seedlings in vitro. After 4 weeks, the hybrid seedlings were transplanted into pots and placed in a growth chamber. Then, in mid-September, they were planted out in the experimental field next to the parental components. Chromosome number of the hybrids were assessed on smear preparations of meristematic cells from the seedling root tips. During the growing season, immature spikes were collected from the leaf sheaths of the hybrid plants for meiosis analysis. Cytological analysis revealed abnormalities in the microsporogenesis process of the hybrids, which resulted in the development of non-viable pollen. Some spikes of the F1 hybrids were castrated and back-pollinated with wheat pollen. The F1 hybrids were also propagated in vitro by placing 100 fragments of immature inflorescences in each cross combination on MS medium supplemented with 2 mg dm–3 2.4-D (2.4-dichlorophenoxyacetic acid). Five R1 plants in the Ae. triuncialis L. × T. aestivum L. Zyta combination were regenerated from callus produced by the explants. At the full maturity stage, biometric traits such as general tillering, main shoot length, diameter of the second internode from the bottom, length of the main spike rachis, main spike density and main spike fertility were measured on F1 and R1 hybrid plants. The hybrids were characterized by intermediate tillering (15.0–41.0 stems) compared to their parental forms, a diameter of the second internode from the bottom (2.1–2.9 mm), a dense main spike (14.6–17.5), shorter stems (43.0–48.3 cm) and spike rachis (0.55–0.68 dm), and sterile spikes.

References

  1. Aghaee-Sarbarzeh M., Ferrahi M., Singh S. i in., 2002. PhI-induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica 127, 377–382. https://doi.org/10.1023/A:1020334821122
  2. Aghaee-Sarbarzeh M., Singh H., Dhaliwal H.S., 2008. A microsatellite marker linked to leaf rust resistance transferred from Aegilops triuncialis into hexaploid wheat. Plant Breed. 120(3), 259–261. https://doi.org/10.1046/j.1439-0523.2001.00598.x
  3. Aigner P.A., Woerly R.J., 2011. Herbicides and mowing to control barb goatgrass (Aegilops triun-cialis) and restore native plants in serpentine grasslands. Invas. Plant Sci. Manag. 4(4), 448–457. https://doi.org/10.1614/IPSM-D-11-00027.1
  4. Arzani A., Ashraf M., 2016. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit. Rev. Plant Sci. 35, 146–189. https://doi.org/10.1080/07352689.2016.1245056
  5. Bai D., Scoles G.J., Knott D.R., 1994. Transfer of leaf rust and stem rust resistance genes from Triticum triaristatum to durum and bread wheats and their molecular cytogenetic localization. Genome 37(3), 410–418. https://doi.org/10.1139/g94-058
  6. Bocianowski J., Prażak R., 2022. Genotype by year interaction for selected quantitative traits in hybrid lines of Triticum aestivum L. with Aegilops kotschyi Boiss. and Ae. variabilis Eig. using the additive main effects and multiplicative interaction model. Euphytica 218(11). https://doi.org/10.1007/s10681-022-02967-4
  7. Chrząstek M., 2000. Wpływ dodanych i podstawionych chromosomów żyta (Secale cereale L.) cv. Dańkowskie Złote na mejozę oraz niektóre cechy morfologiczne i fizjologiczne pszenicy (Triticum aestivum L.) ev. Grana. Rozprawa habilitacyjna. Rozprawy Naukowe Akademii Rolniczej w Lublinie 242. Wyd. AR w Lublinie, Lublin.
  8. Chueca M., Cauderon Y., Tempe J., 1977. Techniques d’obtention d’hybrides Blé tender × Aegilops par culture in vitro d’embryons immatures. Ann. Amélior. Plantes 27(5), 539–547.
  9. Darko E., Khalil R., Dobi Z. i in., 2020. Addition of Aegilops biuncialis chromosomes 2M or 3M improves the salt tolerance of wheat in different way. Sci. Rep. 10(22327). https://doi.org/10.1038/s41598-020-79372-1
  10. Davies P.A., Pallota M.A., Ryan S.A. i in., 1986. Somaclonal variation in wheat: genetic and cyto-genetic characterization of alcohol dehydrogenase 1 mutants. Theor. Appl. Genet. 72, 644–653.
  11. Delibes A., López-Braña I., Mena M. i in., 1988. Introgression of Aegilops triuncialis into Triticum aestivum. A progress report. An. Aula Dei 19(1–2), 189–194.
  12. Fakhri Z., Mirzaghaderi G., Ahmadian S. i in., 2016. Unreduced gamete formation in wheat × Ae-gilops interspecific hybrids is genotype specific and prevented by shared homologous subgenomes. Plant Cell Rep. 35, 1143–1154. https://doi.org/10.1007/s00299-016-1951-9
  13. Feldman M., 1988. Cytogenetic and molecular approaches to alien gene transfer in wheat. Proc. of the Seventh Int. Wheat Genet. Symp. 1, 23–32.
  14. Feldman M., Levy A.A., 2023. Aegilops L. W: M. Feldman, A.A. Levy, Wheat evolution and do-mestication. Springer Nature Link Berlin, Heidelberg, 213–364.
  15. Hadzhiivanova B., Taneva K., Bozhanova V. i in., 2025. Evaluation of yield and quality of advanced durum wheat lines obtained by the distant hybridization method. Bulg. J. Agric. Sci. 62(1), 3–16. https://doi.org/10.61308/CJNU6516
  16. Hejnowicz Z., 2002. Anatomia i histogeneza roślin naczyniowych. Organy wegetatywne. Wyd. Nauk. PWN, Warszawa.
  17. Ijazl M., Afzal A., Shabbir G. i in., 2023. Breeding wheat for leaf rust resistance: past, present and future. Asian J. Agric. Biol. 1, 1–16. https://doi.org/10.35495/ajab.2021.426
  18. Karagoz A., 2006. Hybridization in Turkish Aegilops L. Species. Pak. J. Biol. Sci. 9(12), 2243–2248. https://doi.org/10.3923/pjbs.2006.2243.2248
  19. Kiani R., Arzani A., Mirmohammady Maibody S., 2021. Polyphenols, flavonoids, and antioxidant activity involved in salt tolerance in wheat, Aegilops cylindrica and their amphidiploids. Front Plant Sci. 12, 493. https://doi.org/10.3389/fpls.2021.646221
  20. Kimber G., Feldman M., 1987. Wild wheat: an introduction. Special Report 35. College of Agricul-ture, University of Missouri, Columbia, 1–146. https://hdl.handle.net/10355/57430
  21. Komaki M.K., Tsunewaki K., 1981. Genetic studies on the difference of anther length among com-mon wheat cultivar. Euphytica 30, 45–53. https://doi.org/10.1007/BF00033658
  22. Laugerotte J., Baumann U., Sourdille P., 2022. Genetic control of compatibility in crosses between wheat and its wild or cultivated relatives. Plant Biotechnol. J. 20(5), 812–832. https://doi.org/10.1111/pbi.13784
  23. Martín-Sánchez J.A., Gómez-Colmenarejo M., Del Moral J. i in., 2003. A new Hessian fly re-sistance gene (H30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat. Theor. Appl. Genet. 106(7), 1248–1255. https://doi.org/10.1007/s00122-002-1182-z
  24. Mirzaghaderi G., Abdolmalaki Z., Ebrahimzadegan R. i in., 2020. Production of synthetic wheat lines to exploit the genetic diversity of emmer wheat and D genome containing Aegilops species in wheat breeding. Sci. Rep. 10, 19698. https://doi.org/10.1038/s41598-020-76475-7
  25. Mirzaghaderi G., Houben A., Badaeva E.D., 2014. Molecular-cytogenetic analysis of Aegilops triuncialis and identification of its chromosomes in the background of wheat. Mol. Cytogenet. 7(1), 91. https://doi.org/doi: 10.1186/s13039-014-0091-6
  26. Murashige T., Skoog F., 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15, 473–497.
  27. Pilch J., 2005. Możliwości wykorzystania krzyżowania introgresywnego w hodowli pszenicy ozi-mej Triticum aestivum L. Część I. Zastosowanie systemów genetycznych pszenicy T. aestivum L. do otrzymania mieszańców pomostowych F1. Biul. IHAR 235, 31–41. https://doi.org/10.37317/biul-2005-0059
  28. Pilch J., Głowacz E., Kubara-Szpunar Ł. I in., 1995. Mieszance oddalone Triticum aestivum L. jako źródła odporności na choroby kłosa. Biul. IHAR 194, 159–167.
  29. Prażak R., 1996. Somatic embryogenesis and plant regeneration of common wheat Triticum aes-tivum L. J. Appl. Genet. 37A, 246–248.
  30. Prażak R., 1997. Charakterystyka morfologiczna mieszańców F1 Triticum aestivum L. i Triticum durum Desf. z wybranymi gatunkami Aegilops sp. Biul. IHAR 204, 33–42.
  31. Prażak R., 2001. Cross direction for successful production of F1 hybrids between Triticum and Aegilops species. Plant Breed. Seed Sci. 45(1), 83–86.
  32. Prażak R., Krzepiłko A., 2018. Evaluation of iron and zinc content in grain of Aegilops L. × Triticum aestivum L. hybrid lines. J. Elem. 23(2), 545–557. https://doi.org/10.5601/jelem.2017.22.3.1486
  33. Prażak R., Molas J., 2017. Ocena jakości ziarna linii mieszańcowych Aegilops L. × Triticum aestivum L. Pol. J. Agron. 29, 35–42.
  34. Sears E.R., 1981. Transfer of alien genetic material to wheat. W: L.T. Evans, W.J. Peacock (red.). Wheat science – today and tomorrow. Cambridge University Press, Cambridge, 75–89.
  35. Stefanowska G., Prażak R., Strzembicka A. i in., 1995. Transfer genów z Aegilops ventricosa Tausch. i Aegilops juvenalis (Thell) Eig. do Triticum aestivum L. Biul. IHAR 194, 45–52.
  36. Wang X., Yoo E., Lee S. i in., 2022. Classification of 17 species Aegilops using DNA barcoding and SNPs, reveals gene flow among Aegilops biuncialis, Aegilops juvenalis, and Aegilops co-lumnaris. Front. Plant Sci. 13, 984825. https://doi.org/10.3389/fpls.2022.984825
  37. Yildiz M., Terzi H., Arikan E.S., 2006. Seed germination of populations of wild wheat species, Aegilops biuncialis and Ae. triuncialis: effects of salinity, temperature and photoperiod. Pak. J. Biol. Sci. 9(7), 1299–1305.
  38. Zaharieva M., Monneveux P., 2005. Spontaneous hybridization between bread wheat (Triticum aestivum L.) and its wild relatives in Europe. Crop Sci. 46(2), 512–527.
  39. Zhao L., Ning S., Yi, Y. i in., 2018. Fluorescence in situ hybridization karyotyping reveals the pres-ence of two distinct genomes in the taxon Aegilops tauschii. BMC Genomics 19(3), 1–9. https://doi.org/10.1186/s12864-017-4384-0

Downloads

Download data is not yet available.

Similar Articles

<< < 48 49 50 51 52 53 54 > >> 

You may also start an advanced similarity search for this article.