Abstract
NGS technology is a universal diagnostic tool in molecular biology. It is used for sequencing genomes and transcripts, protein–DNA/RNA interactions, methylation tests, and metagenomic studies. The technique allows for the analysis of different DNA fragments represented by multiple copies during a single reaction, library preparation and obtaining a genomic gigabase from a single sequencing. By NGS technology, the number of research probes and the reliability of sequencing results are increased.
This is especially valuable when the variation between genotypes is small. The costs and period of the sequencing process are repeatedly lower than compared with the capillary sequencer. NGS technology is useful for learning new SNPs and other variants of diversity, like deletions or indels. A specific bioinformatic analysis of the sequencing results will allow to acquire knowledge about genetic diversity of plants within a single species, more precise mapping of quantitative traits loci, accurate taxonomic identification of objects and assigning them to specific species, which is very important in GenBank collections. The article presents the available sequencing technologies with their precise characteristics. The authors aim is to update information on the latest advances in sequencing technology and their use in plant biotechnology.
References
- Ashelford K., Eriksson M.E., Allen C.M., D’Amore R., Johansson M., Gould P., Kay S., 2011. Full genome re-sequencing reveals a novel circadian clock mutation in Arabidopsis. Genome Biol. 12, R28.
- Baird N., Etter P., Atwood T., 2008. Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. PLoS ONE, 3.
- Brown T.A., 2001. Genomy. Wyd. Nauk. PWN, Warszawa, 60–70.
- Davey J.W., Blaxter M.L., 2010. RADSeq: next-generation population genetics. Brief Funct Genomics. 9(5–6), 416–423.
- Edwards D., Batley J., 2010. Plant genome sequencing – applications for crop improvement. Plant Biotechnol. J. 8, 2–9.
- Egan A.N., Schlueter J., Spooner D.M., 2012. Applications of next-generation sequencing in plant biology. Am. J. Bot. 99, 2175–2185.
- Franca L.T.C., Carrilho E., Kist T.B.L., 2002. A review of DNA sequencing techniques. Q. Rev. biophys. 35,169–200.
- Ginolhac A., Vilstrup J., Stenderup J., Rasmussen M., Stiller M., Shapiro B., Zazula G., Froese D., Steinmann K.E., Thompson J.F., AL-Rasheid K.A.S., Gilbert T.M.P., Willerslev E., Orlando L., 2012. Improving the performance of true single molecule sequencing for ancient DNA. BMC Genomics 13, 177.
- Hamilton J.P., Buell R., 2012. Advences in plant genome sequencing. High-Resolution Measurements In Plant Biology. Plant J. 70, 177–190.
- Howden B.P., McEvoy C.R.E., Allen D.L., Chua K., Gao W., Harrison P.F., Bell J.,Coombs G., Bennett-Wood V., Porter J.L., Robins-Browne R., Davies J.K., Seemann T., Stinear T.P., 2011. Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS Pathogens 7, e1002359.
- Illumina, http://www.illumina.com.
- Jiao Y., Peluso P., Shi J., Liang T., Stitzer M.C., Wang B., Campbell M.S., Stein J.C., Wei X., Chin Ch.S., Guill K., Regulski M., Kumari S., Olson A., Gent J., Schneider K.L., Wolfgruber T.K., Maja M.R., Springer N.M., Antoniou E., McCombie W.R., Preston G.G., McMullen M., Ross-Ibarra J., Dawe B.K., 2017. Improved maize reference genome with single-molecule technologies. Nature 10, 1038.
- Kotowska M., Zakrzewska-Czerwinska J., 2010. Kurs szybkiego czytania DNA – nowoczesne techniki sekwencjonowania. Biotechnologia 4(91), 24–38.
- Levene M.J., Korlach J., Turner S.W., Foquet M., Craighead H.G., Webb W.W., 2003. Zero-mode waveguides for single-molecule analysis at high concentration. Science 299, 682–686.
- Lin X., Kaul S., Rounsley S., 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402, 761–768.
- McCouch S.R., McNally K.L., Wang W., Hamilton R.S., 2012. Genomics of gene banks: A case study in rice. Am. J. Bot. 99, 407–423.
- Margulies M., Michael E., William E.A., 2005. Genome sequencing in microfabricated highdensity picolitre reactors. Nature 437, 376–380.
- Newman T., De Bruijn F.J., Green P., 1994. Genes galore: a summary of methods for accesing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol. 106, 1241–1255.
- Orlando L., Ginolhac A., Raghavan M., Vilstrup J., Rasmussen M., Magnussen K., Steinmann K.E., Kapranov P., Thompson J.F., Zazula G., Froese D., Moltke I., Shapiro B., Hofreiter M., AlRasheid K.A.S., Gilbert T.M.P., Willerslev E., 2011. True Single-Molecule DNA Sequencing of a Pleistocene Horse Bone. Genome Res. 10, 1705–1719.
- Orłowska M., Sobczyk M., 2017. Metody sekwencjonowania nowej generacji oraz ich wykorzystanie w genetyce, hodowli i biotechnologii roślin. Aparat. Bad. Dydakt. 22(1), 54–61.
- Oxford Nanopore Technologies, http://www.nanoporetech.com.
- Oxford Nanopore Technologies (MinION), http://www.nanoporetech.com/products/minion.
- Pennisi E., 2010. Semiconductors inspire new sequencing technologies. Science 327, 1190.
- Przybecki Z., Wóycicki R., Malepszy S., 2009. Sekrety ogórka nareszcie ujawnione – genom ogórka zsekwencjonowany. Post. Biol. Kom. 39,19–31.
- Rothberg J.M., Hinz W., Rearick T.M., Schultz J., Mileski W., Davey M., Leamon J.H. i in., 2011. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475,
- –352.
- Sanger F., 2001. The Elary days of DNA sequences. Nat. Med. 3, 267–268.
- Sanger F., Nicklen S., Coulson A.R., 1977. DNA sequencing with chain-terminating inhibitors. Proc. Nat. Acad. Sci. USA 74(12), 5463–5467.
- Scheffler B.E., Kuhn D.N., Motamayor J.C., Schnell R.J., 2009. Efforts towards sequencing the Cacao genome (Theobroma cacao). Plant Anim. Genomes Conf. XVII. San Diego, CA.
- Schnable P.S., Ware D., Fulton R.S., 2009. The B73 maize genome: complexity, diversity and dynamics. Science 326, 1112–1115.
- Seqll, http://www.seqll.com.
- Swaminathan K., Varala K., Moose S.P., Rokhsar D., Ming R., Hudson M.E., 2009. A genome survey of Miscanthus × Giganteus. Plant Anim. Genomes Conf. XVII. San Diego, CA. Shulaev V., Sargent D.J., Crowhurst R.N., Mockler T.C., Folkerts O., Delcher A.L., Jaiswal P., 2011. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 43, 109–116.
- Thompson J.F., Milos P.M., 2011. The properties and applications of single-molecule DNA sequencing. Genome Biol. 12, 217.
- Wicker T., Schlagenhauf E., Graner A., Close T.J., Keller B., Stein N., 2006. 454 Sequencing put to the test using the complex genome of barley. BMC Genomics 7, 275.
- Whitelaw C.A., Barbazuk W.B., Pertea G., 2003. Enrichment of gene-coding sequences in maize by genome filtration. Science 302, 2118–2120.
- Yu J., Hu S., Wang J., 2002. A draft sequence of rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92.
Downloads
Download data is not yet available.
-
Marzena S. Brodowska,
The effect of sulphur fertilization on the content of nitrogen in plants in the conditions of differentiated soil supply with calcium and magnesium
,
Agronomy Science: Vol. 59 No. 4 (2004)
-
Ewa Szara,
Stanisław Mercik,
Tomasz Sosulski,
Balance of phosphorus in three fertilization systems
,
Agronomy Science: Vol. 59 No. 2 (2004)
-
RYSZARD WEBER,
DARIUSZ ZALEWSKI,
HENRYK BUJAK,
JAN KACZMAREK,
EWA ŚMIAŁEK,
Interaction of winter wheat varieties with conditions of the habitat in the formation of the yielding levels on the basis of post-registratioin cultivat testing in lower Silesia
,
Agronomy Science: Vol. 66 No. 2 (2011)
-
Małgorzata Gruszczyk,
Stanisław Berbeć,
The effect of foliar application of some preparations on yield and quality of feverfew (Chrysanth emum parthenium L.) row material
,
Agronomy Science: Vol. 59 No. 2 (2004)
-
ALI HULAIL NOAEMA,
ALI RAHEEM KAREEM ALHASANY,
DHURGAM SABEEH KAREEM ALTAI,
BARBARA HELENA SAWICKA,
Effect of nano-boron spraying on the concentration of some nutrients in leaves and dry matter of two Vicia faba L. (Partim) cultivars
,
Agronomy Science: Vol. 74 No. 4 (2019)
-
Lesław Bernard Lahuta,
Joanna Szablińska-Piernik,
Ryszard J. Górecki,
Joanna Mitrus,
Marcin Horbowicz,
Changes in the content of D-chiro-inositol and its α-D-galactosyl derivatives during vegetation and desiccation of common buckwheat (Fagopyrum esculentum Moench)
,
Agronomy Science: Vol. 78 No. 2 (2023)
-
ANDRZEJ KRUCZEK,
WITOLD SKRZYPCZAK,
Reaction of the medium early maize hybrids on the method of fertilization
,
Agronomy Science: Vol. 65 No. 1 (2010)
-
HALINA LIPIŃSKA,
TERESA WYŁUPEK,
MAŁGORZATA SOSNOWSKA,
AGNIESZKA KĘPKOWICZ,
WOJCIECH LIPIŃSKI,
EWA STAMIROWSKA-KRZACZEK,
Allelopathic properties of selected lawn cultivars of Poa pratensis and their utilization in garden compositions
,
Agronomy Science: Vol. 74 No. 4 (2019)
-
Natalia A. Lykova,
Anna K. Vilichko,
Dina I. Alexeeva,
Complex diagnostics of crop yield in ecological trials of cereal cultivars
,
Agronomy Science: Vol. 59 No. 4 (2004)
-
MAGDALENA SZWED,
JOANNA MITRUS,
MARCIN HORBOWICZ,
Allelopathic effect of buckwheat extract for seedlings of selected weed species
,
Agronomy Science: Vol. 74 No. 4 (2019)
<< < 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.