Abstract
Phosphorus is an essential but limited in occurrence element of great importance for all living organisms, including plants. The world’s phosphate deposits used for the production of phosphate fertilizers are rapidly depleting, hence this element was placed on the so-called list of critical raw materials. Agriculture and horticulture are highly dependent on the use of phosphate fertilizers to maintain the production of high quality food and feed. The demand for phosphorus as a fertilizer is projected to increase as the world population grows from the current 7.2 billion to 9.6 billion in 2050. Hence, alternative sources of it should be sought. Potential sources of phosphorus are different kinds of waste, e.g. sewage sludge or ashes produced as a result of their combustion. Direct use of sewage sludge in agriculture and its storage is currently being replaced by thermal utilization or recovery of nutrients. Thanks to the use of circular economy, sewage sludge as a potentially hazardous waste, which is also rich in phosphorus, is transformed into a finished product and returned to the environment in the form of fertilizers. The product of phosphorus recovery from
sewage sludge is, among others, struvite, which can be successfully used in agriculture. A priority of EU economic policy is the production of fertilizers in a sustainable manner, which will be met, for example, by the production of struvite. Struvite contains not only phosphorus, but also nitrogen and magnesium in its composition. The amount of phosphorus and magnesium that can be introduced to the soil with struvite is higher than that of typical mineral fertilizers. In turn, the amount of nitrogen is lower than in typical fertilizers (about 5% N) and very low in the case of potassium. Therefore, it is recommended to use struvite in combination with conventional fertilizers for optimal balance of individual macronutrients. Struvite is considered an effective slow-release nutrient fertilizer that can be successfully applied to agricultural, vegetable and ornamental crops. Low salinity index, limited leaching of nutrients and high quality of the fertilizer resulting from low content of heavy metals make struvite an environmentally friendly fertilizer. Struvite as a soil fertiliser does not increase the content of heavy metals in plants and soil. The application of struvite positively affects the yields of many crop species. Preliminary studies on its use in crop production even indicate higher efficacy compared to typical water-soluble phosphorus fertilizers. Therefore, future research on struvite should focus on optimizing the production and use of sludge-based fertilizers for fertilizing various agricultural, horticultural and fruit crops.
References
- Amann A., Zoboli O., Krampe J., Rechberger H., Zessner M., Egle L., 2018. Environmental impacts of phosphorus recovery from municipal wastewater. Resour Conserv Recycl. 130, 127–139. https://doi.org/10.1016/j.resconrec.2017.11.002
DOI: https://doi.org/10.1016/j.resconrec.2017.11.002
- Bezak-Mazur E., Stoińska R., 2013. Znaczenie fosforu w środowisku – artykuł przeglądowy. Arch. Waste Manag. Environ. Prot. 15(3), 33–42 [in Polish].
- Bezak-Mazur E., Mazur A., 2011. Specjacja fosforu w osadach ściekowych powstających w technologii EvU-PERL. Ochr. Śr. Zasobów Nat. 49, 382–388.
- Bień J., Neczaj E., Worwąg M., Grosser A., Nowak D., Milczarek M., Janik M., 2013. Kierunki zagospodarowania osadów w Polsce po roku 2013. Inż. Ochr. Śr. 14(4), 375–384.
- Bonvin C., Etter B., Udert K.M., Frossard E., Nanzer S., Tamburini F., Oberson A., 2015. Plant uptake of phosphorus and nitrogen recycled from synthetic source-separated urine. Ambio. 44(2), 17–27. https://doi.org/10.1007/s13280-014-0616-6
DOI: https://doi.org/10.1007/s13280-014-0616-6
- Buckwell A., Nadeu E. 2016. Nutrient recovery and reuse (NRR) in European agriculture. A review of the issues, opportunities, and actions, https://www.organicseurope.bio/content/uploads/2020/06/2016_RISE_NRR_Full_EN_compressed.pdf?dd
- Bunce J.T., Ndam E, Ofiteru I.D., Moore A., Graham D.W., 2018. A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Front. Environ. Sci. 6(8). https://doi.org/10.3389/fenvs.2018.00008
DOI: https://doi.org/10.3389/fenvs.2018.00008
- Cabeza R., Steingrobe B., Römer W., Claassen N., 2011. Effectiveness of recycled P products as P fertilizers, as evaluated in pot experiments. Nutr. Cycl. Agroecosystems 91(2). https://doi.org/10.1007/s10705-011-9454-0
DOI: https://doi.org/10.1007/s10705-011-9454-0
- Childers D.L., Corman J., Edwards M., Elser J.J., 2011. Sustainability challenges of phosphorus and food: Solutions from closing the human phosphorus cycle. Bioscience 61(2), 117–124. https://doi.org/10.1525/bio.2011.61.2.6
DOI: https://doi.org/10.1525/bio.2011.61.2.6
- Cieślik B., Konieczka P., 2017. A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. J. Clean. Prod. 142(4), 1728–1740. https://doi.org/10.1016/j.jclepro.2016.11.116
DOI: https://doi.org/10.1016/j.jclepro.2016.11.116
- Cieślik B.M., Namieśnik J., Konieczka P., 2015. Review of sewage sludge management: Standards, regulations and analytical methods. J. Clean. Prod. 90, 1–15. https://doi.org/10.1016/j.jclepro.2014.11.031
DOI: https://doi.org/10.1016/j.jclepro.2014.11.031
- Cornel P., Schaum C., 2009. Phosphorus recovery from wastewater: Needs, technologies and costs. Water Sci Technol. 59(6), 1069–1076. https://doi.org/10.2166/wst.2009.045
DOI: https://doi.org/10.2166/wst.2009.045
- Dai J.Y., Chen L., Zhao J.F., Ma N., 2006. Characteristics of sewage sludge and distribution of heavy metal in plants with amendment of sewage sludge. J. Environ. Sci. (China) 18(6), 1094–1100. https://doi.org/10.1016/s1001-0742(06)60045-4
DOI: https://doi.org/10.1016/S1001-0742(06)60045-4
- Degryse F., Baird R., da Silva R.C., McLaughlin M.J., 2017. Dissolution rate and agronomic effectiveness of struvite fertilizers – effect of soil pH, granulation and base excess. Plant Soil. 410, 139–152. https://doi.org/10.1007/s11104-016-2990-2
DOI: https://doi.org/10.1007/s11104-016-2990-2
- Dissanayake C.B., Chandrajith R., 2009. Phosphate Mineral Fertilizers, trace metals and human health. J. Natl Sci Found Sri Lanka. 37 (3), 153-165. https://doi.org/10.4038/jnsfsr.v37i3.1219
DOI: https://doi.org/10.4038/jnsfsr.v37i3.1219
- EC, 2020. Critical raw materials, https://ec.europa.eu/growth/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en [dostęp: 11.07.2022].
- Egle L., Rechberger H., Krampe J., Zessner M., 2016. Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci Total Environ. 571, 522–542. https://doi.org/10.1016/j.scitotenv.2016.07.019
DOI: https://doi.org/10.1016/j.scitotenv.2016.07.019
- Egle L., Rechberger H., Zessner M., 2015. Overview and description of technologies for recovering phosphorus from municipal wastewater. Resour. Conserv. Recycl. 105(B), 325–346. https://doi.org/10.1016/j.resconrec.2015.09.016
DOI: https://doi.org/10.1016/j.resconrec.2015.09.016
- Eurostat, 2017. Waste Statistics/es. Statistics Explained. Com Eur. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics [dostęp: 11.07.2022].
- Gawdzik J., Długosz J., Urbaniak M., 2015. General characteristics of the quantity and quality of sewage sludge from selected wastewater treatment plants in Świętokrzyskie province. Environ. Prot Eng. 41, 107–117.
DOI: https://doi.org/10.37190/epe150209
- Geissler B., Hermann L., Mew M.C., Steiner G., 2018. Striving toward a circular economy for phosphorus: The role of phosphate rock mining. Minerals 8(9), 395. https://doi.org/10.3390/min809039
DOI: https://doi.org/10.3390/min8090395
- Ghosh G.K., Mohan K.S., Sarkar A.K., 1996. Characterization of soil-fertilizer P reaction products and their evaluation as sources of P for gram (Cicer arietinum L.). Nutr. Cycl. Agroecosyst. 46(1), 71–79.
DOI: https://doi.org/10.1007/BF00210225
- González-Ponce R., García-López-de-Sá M.E., 2007. Evaluation of struvite as a fertilizer: A comparison with traditional P sources. Agrochimica 51(6), 301 308.
- Guidi Nissim W., Cincinelli A., Martellini T., Alvisi L., Palm E., Mancuso S., Azzarello E., 2018. Phytoremediation of sewage sludge contaminated by trace elements and organic compounds. Environ Res. 356–366. https://doi/org/10.1016/j.envres.2018.03.009
DOI: https://doi.org/10.1016/j.envres.2018.03.009
- Hermann L., Kraus F, Hermann R., 2018. Phosphorus processing-potentials for higher efficiency. Sustainability 10(5), 1482. https://doi.org/10.3390/su10051482
DOI: https://doi.org/10.3390/su10051482
- Herzel H., Krüger O., Hermann L., Adam C., 2016. Sewage sludge ash – A promising secondary phosphorus source for fertilizer production. Sci. Total Environ. 542, 1136–1143. https://doi.org/10.1016/j.scitotenv.2015.08.059
DOI: https://doi.org/10.1016/j.scitotenv.2015.08.059
- Hoornweg D., Bhada-Tata P., Kennedy C., 2013. Environment: waste production must peak this century Nature, 502, 615–617. https://doi.org/10.1038/502615a
DOI: https://doi.org/10.1038/502615a
- Jama-Rodzeńska, A., Sowiński J., Koziel J.B.A., 2021. Phosphorus recovery from sewage sludge ash based on cradle-to-cradle approach – mini-review. Minerals 11(985). https://doi.org/10.3390/min11090985
DOI: https://doi.org/10.3390/min11090985
- Johnston A.E., Richards I.R., 2003. Effectiveness of different precipitated phosphates as phosphorus sources for plants. Soil Use Manag. 19(1), 45–49. https://doi.org/10.1079/SUM2002162
DOI: https://doi.org/10.1111/j.1475-2743.2003.tb00278.x
- Kacprzak M., Neczaj E., Fijałkowski K., Grobelak A., Grosser A., Worwag M., Rorat A., Brattebo H., Almås Å., Singh B.R., 2017. Sewage sludge disposal strategies for sustainable development. Environ. Res. 156, 39–46. https://doi/org/10.1016/j.envres.2017.03.010
DOI: https://doi.org/10.1016/j.envres.2017.03.010
- Krüger O, Adam C., 2014. Recovery potential of German sewage sludge ash. Waste Manag. 45, 400–406. https://doi.org/10.1016/j.wasman.2015.01.025
DOI: https://doi.org/10.1016/j.wasman.2015.01.025
- Latifian M., Liu J., Mattiassona B., 2012. Struvite-based fertilizer and its physical and chemical properties. Environ. Technol. (United Kingdom) 33(22–24), 2691–2697. https://doi.org/10.1080/09593330.2012.676073
DOI: https://doi.org/10.1080/09593330.2012.676073
- Li B., Boiarkina I., Yu W., Huang H.M., Munir T., Wang G.Q., Young B.R., 2019. Phosphorous recovery through struvite crystallization: Challenges for future design. Sci. Total Environ. 648, 1244–1256. https://doi.org/10.1016/j.scitotenv.2018.07.166
DOI: https://doi.org/10.1016/j.scitotenv.2018.07.166
- MacDonald G.K., Bennett E.M., Potter P.A., Ramankutty N., 2011. Agronomic phosphorus imbalances across the world’s croplands. Proc. Natl. Acad. Sci. USA 108(7), 3086–3091. https://doi.org/10.1073/pnas.1010808108
DOI: https://doi.org/10.1073/pnas.1010808108
- Massey M.S., Davis J.G., Ippolito J.A., Sheffield R.E., 2009. Effectiveness of recovered phosphate as fertilizers in neutral and slightly alkaline soils. Agron. 101, 323–329.
DOI: https://doi.org/10.2134/agronj2008.0144
- Morse G.K., Brett S.W., Guy J.A., Lester J.N., 1998. Review: Phosphorus removal and recovery technologies. Sci Total Environ. 212, 69–89.
DOI: https://doi.org/10.1016/S0048-9697(97)00332-X
- Nguyen N.K., Chaudhary D.K., Dahal R.H., Trinh N.H., Kim J., Chang S.W., Hong Y., La D.D., Nguyen X.C., Ngo H.H., Chung W.J., Nguyen D.D., 2021. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge, Fuel 285(1).
DOI: https://doi.org/10.1016/j.fuel.2020.119105
- Peng L., Dai H., Wu Y., Peng Y., Lu X., 2018. A comprehensive review of phosphorus recovery from
- wastewater by crystallization processes. Chemosphere 197, 768-781. https://doi/org/10.1016/j.chemosphere.2018.01.098.
- Plaza C., Sanz R., Clemente C., Fernández J.M., González R., Polo A., Colmenarejo M.F., 2007. Greenhouse evaluation of struvite and sludges from municipal wastewater treatment works as phosphorus sources for plants. J. Agric. Food Chem. 55(20), 8206–8212. https://doi.org/10.1021/jf071563y
DOI: https://doi.org/10.1021/jf071563y
- Rahman M.M., Salleh M.A.M., Rashid U., Ahsan A., Hossain M.M., Ra C.S., 2014. Production of slow release crystal fertilizer from wastewaters through struvite crystallization – A review. Arab. J. Chem. 7, 139–155.
DOI: https://doi.org/10.1016/j.arabjc.2013.10.007
- Reza A., Shim S., Kim S., Ahmed N., Won S., Ra C., 2019. Nutrient leaching loss of pre-treated struvite and its application in Sudan grass cultivation as an eco-friendly and sustainable fertilizer source. Sustainability 11(15), 4204. https://doi.org/10.3390/su11154204
DOI: https://doi.org/10.3390/su11154204
- Rhyner C.R., Schwartz L.J., Wenger R.B., Kohrell M.G.,1995. Waste generation. W: C.R. Rhyner, L.J. Schwartz, R.B.Wenger, M.G. Kohrell, Waste management and resource recovery. Boca Raton. https://doi.org/10.1201/9780203734278
DOI: https://doi.org/10.1201/9780203734278
- Ricardo G.P., López-de-Sá E.G., Plaza C., 2009. Lettuce response to phosphorus fertilization with struvite recovered from municipal wastewater. HortScience 44, 2. https://doi.org/10.21273/HORTSCI.44.2.426
DOI: https://doi.org/10.21273/HORTSCI.44.2.426
- Rittl T., Krogstad T., Eikås S., Saltnes T., Sørensen G., Glestad H.E., Løes A., 2019. Effects of struvite application on soil and plants: a short‐term field study. Norsøk Rep. 4(10), https://orgprints.org/id/eprint/36472/1/NORS%C3%98K%20RAPPORT%2010%20struvitt%20FINAL%20Sept%205%202019%20trykk.pdf
- Ronteltap M., Maurer M., Gujer W., 2007. Struvite precipitation thermodynamics in source-separated urine. Water Res. 41(5), 977–984. https://doi.org/10.1016/j.watres.2006.11.046
DOI: https://doi.org/10.1016/j.watres.2006.11.046
- Roy E.D., 2017. Phosphorus recovery and recycling with ecological engineering: A review. Ecol. Eng. 98, 213–227. https://doi.org/10.1016/j.ecoleng.2016.10.076
DOI: https://doi.org/10.1016/j.ecoleng.2016.10.076
- Scholz R.W., Ulrich A.E., Eilittä M., Roy A., 2013. Sustainable use of phosphorus: A finite resource. Sci. Total Environ. 461–462, 799–803. https://doi.org/10.1016/j.scitotenv.2013.05.043
DOI: https://doi.org/10.1016/j.scitotenv.2013.05.043
- Sengupta S., Nawaz T., Beaudry J., 2015. Nitrogen and phosphorus recovery from wastewater. Curr. Pollut. Reports 1(3), 155–166.
DOI: https://doi.org/10.1007/s40726-015-0013-1
- Shu L., Schneider P., Jegatheesan V., Johnson J., 2006. An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresour. Technol. 97(17), 2211–2216. https://doi.org/10.1016/j.biortech.2005.11.005
DOI: https://doi.org/10.1016/j.biortech.2005.11.005
- Siciliano A., 2016. Assessment of fertilizer potential of the struvite produced from the treatment of methanogenic landfill leachate using low-cost reagents. Environ Sci Pollut Res. 23(6), 5949–5959. https://doi.org/10.1007/s11356-015-5846-z
DOI: https://doi.org/10.1007/s11356-015-5846-z
- Smol M., Kulczycka J., Kowalski Z., 2016. Sewage sludge ash (SSA) from large and small incineration plants as a potential source of phosphorus – Polish case study. J. Environ. Manag. 184(Pt 3), 617–628. https://doi.org/10.1016/j.jenvman.2016.10.035
DOI: https://doi.org/10.1016/j.jenvman.2016.10.035
- Spanoghe J., Grunert O., Wambacq E., Sakarika M., Papini G., Alloul A., Spiller M., Derycke V., Stragier L., Verstraete H., Fauconnier K., Verstraete W., Haesaert G., Vlaeminck S.E., 2020.
- Storage, fertilization and cost properties highlight the potential of dried microbial biomass as organic fertilizer. Microb Biotechnol. 13(5), 1377–1389. https://doi.org/10.1111/1751-7915.13554
DOI: https://doi.org/10.1111/1751-7915.13554
- Szymańska M., Sosulski T., Bożętka A., Dawidowicz U., Wąs A., Szara E., Malak-Rawlikowska A., Sulewski P., van Pruissen G.W.P., Cornelissen R.L., 2020. Evaluating the struvite recovered from anaerobic digestate in a farm bio-refinery as a slow-release fertiliser. Energies 13(20), 5342. https://doi.org/10.3390/en13205342
DOI: https://doi.org/10.3390/en13205342
- Szymańska M., Szara E., Wąs A., Sosulski T., van Pruissen G.W.P., Cornelissen R.L., 2019. Struvite – an innovative fertilizer from anaerobic digestate produced in a bio-refinery. Energies 12(2), 296. https://doi.org/10.3390/en12020296
DOI: https://doi.org/10.3390/en12020296
- Talboys P.J, Heppell J., Roose T., Healey J.R., Jones D.L., Withers P.J.A., 2016. Struvite: a slow-release fertiliser for sustainable phosphorus management? Plant Soil. 401, 109–123. https://doi.org/10.1007/s11104-015-2747-3.
DOI: https://doi.org/10.1007/s11104-015-2747-3
- Teah H.Y., Onuki M., 2017. Support phosphorus recycling policy with social life cycle assessment: A case of Japan. Sustainability 9, 1223. https://doi.org/10.3390/su9071223
DOI: https://doi.org/10.3390/su9071223
- Tytła M., 2019. Assessment of heavy metal pollution and potential ecological risk in sewage sludge from municipal wastewater treatment plant located in the most industrialized region in Poland – case study. Int. J. Environ. Res. Public Health 16(13), 2430. https://doi.org/10.3390/ijerph16132430
DOI: https://doi.org/10.3390/ijerph16132430
- UND – United Nations Department of Economic and Social Affairs Population Division, 2017. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables, ESA/P/WP/248.
- Uysal A., Yilmazel Y.D., Demirer G.N., 2010. The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. J. Hazard Mater. 181(1–3), 248–254. https://doi.org/10.1016/j.jhazmat.2010.05.004
DOI: https://doi.org/10.1016/j.jhazmat.2010.05.004
- Wen G., Huang L., Zhang X., Hu Z., 2019. Uptake of nutrients and heavy metals in struvite recovered from a mixed wastewater of human urine and municipal sewage by two vegetables in calcareous soil. Environ. Technol. Innov. 15(2).
DOI: https://doi.org/10.1016/j.eti.2019.100384
- Withers P.J.A., Forber K.G., Lyon C., Rothwell S., Doody D.G., Jarvie H.P., Martin-Ortega J., Jacobs B., Cordell D., Patton M., Camargo-Valero M.A., Cassidy R., 2020. Towards resolving the phosphorus chaos created by food systems. Ambio 49, 1076–1089. https://doi.org/10.1007/s13280-019-01255-1
DOI: https://doi.org/10.1007/s13280-019-01255-1
- Zeng C., Zhang C., Zeng J., Luo H., Tian D., Zhang H., Long F., Xu Y., 2015. Noises-induced regime shifts and -enhanced stability under a model of lake approaching eutrophication. Ecol. Complex.
DOI: https://doi.org/10.1016/j.ecocom.2015.02.005
-
Roman Reszel,
Hanna Reszel,
Aleksandra Głowacka,
The reaction of maize to fertilizing light soils with lime-treated sewage sludge, its mixtures with sugar-beet washing earth from sugar plant sediment tanks and with ash from straw burning stations
,
Agronomy Science: Vol. 59 No. 2 (2004)
-
Wiesław Bednarek,
Adam Kaczor,
Renata Reszka,
The utilization of phosphorus from purified municipal sewage by cultivated plants
,
Agronomy Science: Vol. 58 (2003)
-
Stefania Jezierska-Tys,
Magdalena Frąc,
Mirosław Fidecki,
Influence of fertilization of sewage sludge on enzymatic activity of brown soil
,
Agronomy Science: Vol. 59 No. 3 (2004)
-
Stefania Jezierska-Tys,
Magdalena Frąc,
Mirosław Fidecki,
The effect of fertilization with sewage sludge from dairy on the transformations of nitrogen in brown soil
,
Agronomy Science: Vol. 59 No. 3 (2004)
-
JACEK ANTONKIEWICZ,
BARBARA WIŚNIOWSKA-KIELIAN,
Effect of furnace waste and municipal sewage sludge on the Ca, Mg, K, Na and P uptake by a mixture of grasses
,
Agronomy Science: Vol. 69 No. 2 (2014)
-
Elsayed M. Zeidan,
Abdel-Satar A. El-Khawaga,
Hamdy A. Basha,
Ismail M. El-Hmeed,
Improvement of wheat productivity in newly reclaimed soil in Egypt
,
Agronomy Science: Vol. 60 (2005)
-
Cezary Trawczyński,
Małgorzata Szczepanek,
Dominika Boguszewska-Mańkowska,
Milena Pietraszko,
Elżbieta Wszelaczyńska,
Jarosław Pobereżny,
Katarzyna Gościnna,
Magdalena Tomaszewska-Sowa,
Grzegorz Lemańczyk,
Karol Lisiecki,
Morphological and agronomic features of potato cv. Gardena highly resistant to Phytophthora infestans (Mont.) de Bary depending on the nitrogen dose
,
Agronomy Science: Vol. 79 No. 2 (2024)
-
Ryszard Baryła,
Evaluation of the usefulness of purified sewage for irrigation of grass communities
,
Agronomy Science: Vol. 60 (2005)
-
Jacek Antonkiewicz,
Adam Radkowski,
Usability of selected grass and legume species for biological reclamation of ash dumps
,
Agronomy Science: Vol. 61 (2006)
-
Stanisław Z. Łabuda,
Balanced fertilization designed on the basis of elemental composition of crops at flowering stage
,
Agronomy Science: Vol. 60 (2005)
1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.