Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 80 No. 1 (2025)

Articles

The effects of design changes to the working elements of a strip-till machine. Part II. Plant growth and yield, crop quality

DOI: https://doi.org/10.24326/as.2025.5472
Submitted: December 21, 2024
Published: 19.05.2025

Abstract

Biological and agrotechnical progress in field crop production requires new solutions in the construction and operation of agricultural machines. Strip tillage with simultaneous fertiliser application and seed sowing requires specialised machines with working elements adapted to working conditions. As a result of research and development work, the soil loosening tines, fertiliser applicators and seeding coulters of a hybrid machine operating in a single-pass technology were developed, with improved material and construction. The effects of their use in winter and spring plant agrotechnology were assessed in field experiments. The growth, yield and quality of winter wheat and rapeseed crops, as well as spring barley, peas and maize were determined. The yields of these plants cultivated using a machine equipped with innovative working elements were 2.7–6.9% higher (depending on species) than the yields from plots cultivated using a standard machine. The difference in yields was mainly due to the greater field emergence capacity of plants. The density of plants before harvest and ears of cereals was also higher, as was the mass of grain per plant in maize. Pea seeds grown with the innovative machine contained 0.4 percentage points (pp) more protein, and rapeseed seeds contained 0.4 pp more fat than seeds grown with the machine without any structural changes.

References

  1. Adee E., Hansel F.D., Ruiz Diaz D.A., Janssen K., 2016. Corn response as affected by planting distance from the center of strip-till fertilized rows. Front. Plant Sci. 7, 1232. https://doi.org/10.3389/fpls.2016.01232
  2. Barut Z.B., Ozdemir S., 2024a. The effect of different tillage methods on plant emergence parameters for wheat. W: E. Cavallo, F. Auat Cheein, F. Marinello, K. Saçılık, K. Muthukumarappan, P.C. Abhilash (red.), 15th International Congress on Agricultural Mechanization and Energy in Ag-riculture. Cham: Springer Nature Switzerland, 51–59. https://doi.org/10.1007/978-3-031-51579-8_6
  3. Barut Z.B., Ozdemir S., 2024b. Design approaches of one-pass strip-till machines. W: E. Cavallo, F. Auat Cheein, F. Marinello, K. Saçılık, K. Muthukumarappan, P.C. Abhilash (red.), 15th Inter-national Congress on Agricultural Mechanization and Energy in Agriculture. Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-51579-8_7
  4. Bečka D., Bečková L., Kuchtová P., Cihlář P., Pazderů K., Mikšík V., Vašák J., 2021. Growth and yield of winter oilseed rape under strip-tillage compared to conventional tillage. Plant Soil Envi-ron. 67(2), 85–91. https://doi.org/10.17221/492/2020-PSE
  5. Benincasa P., Zorzi A., Panella F., Tosti G., Trevini M., 2017. Strip tillage and sowing: is precision planting indispensable in silage maize?. Int. J. Plant Prod. 11(4), 577–588. http://dx.doi.org/10.22069/ijpp.2017.3719
  6. Bojarszczuk J., Księżak J., 2023. Efektywność ekonomiczna uprawy soi w zależności od sposobu uprawy. Ann. Pol. Assoc. Agric. Aribus. Econ. 25(4), 26–34. https://doi.org/10.5604/01.3001.0053.9739
  7. Boydas M.G., Turgut N., 2007. Effect of tillage implements and operating speeds on soil physical properties and wheat emergence. Turk. J. Agric. For. 31(6), 399–412. https://journals.tubitak.gov.tr/agriculture/vol31/iss6/6
  8. Celik A., Altikat S., Way T.R., 2013. Strip tillage width effects on sunflower seed emergence and yield. Soil Tillage Res. 131, 20–27. https://doi.org/10.1016/j.still.2013.03.004
  9. Cheng Z., Bai L., Wang Z., Wang F., Wang Y., Liang H., Wang Y., Rong M., Wang Z., 2024. Strip-till farming: combining controlled-release blended fertilizer to enhance rainfed maize yield while reducing greenhouse gas emissions. Agronomy 14(1), 136. https://doi.org/10.3390/agronomy14010136
  10. Fernández F.G., Sorensen B.A., Villamil M.B., 2015. A comparison of soil properties after five years of no‐till and strip‐till. Agron. J. 107(4), 1339–1346. https://doi.org/10.2134/agronj14.0549
  11. Håkansson I., Arvidsson J., Keller T., Rydberg T., 2011a. Effects of seedbed properties on crop emergence: 1. Temporal effects of temperature and sowing depth in seedbeds with favourable properties. Acta Agric. Scand. B Soil Plant Sci. 61(5), 458–468. https://doi.org/10.1080/09064710.2010.506446
  12. Håkansson I., Arvidsson J., Rydberg T., 2011b. Effects of seedbed properties on crop emergence: 2. Effects of aggregate size, sowing depth and initial water content under dry weather conditions. Acta Agric. Scand. B Soil Plant Sci. 61(5), 469–479. https://doi.org/10.1080/09064710.2010.506447
  13. Håkansson I., Keller T., Arvidsson J., Rydberg T., 2011c. Effects of seedbed properties on crop emergence. 4. Inhibitory effects of oxygen deficiency. Acta Agric. Scand. B Soil Plant Sci. 62(2), 166–171. https://doi.org/10.1080/09064710.2011.597423
  14. Håkansson I., Keller T., Arvidsson J., Rydberg T., 2011d. Effects of seedbed properties on crop emergence. 5. Effects of aggregate size, sowing depth and simulated rainfall after sowing on harmful surface-layer hardening. Acta Agric. Scand. B Soil Plant Sci. 62(4), 362–373. https://doi.org/10.1080/09064710.2011.622291
  15. Håkansson I., Rydberg T., Keller T., Arvidsson J., 2011e. Effects of seedbed properties on crop emergence: 3. Effects of firming of seedbeds with various sowing depths and water contents. Acta Agric. Scand. B Soil Plant Sci. 61(8), 701–710. https://doi.org/10.1080/09064710.2010.544668
  16. Hegazy R., Abd-Rabou A., Elsergany A.M., Abdelmouteleb I., 2021. Development and testing mounted multi-use agricultural seedbed preparation machine for Egyptian soils. J. Sus. Agric. Sci. 47(3), 13–26. http://dx.doi.org/10.21608/jsas.2020.50579.1251
  17. Jankowski K.J., Sokólski M., Szatkowski A., Załuski D., 2024. The effects of tillage systems on the management of agronomic factors in winter oilseed rape cultivation: a case study in north-eastern Poland. Agronomy 14(3), 437. https://doi.org/10.3390/agronomy14030437
  18. Jaskulska I., Jaskulski D., 2020. Strip-till one-pass technology in central and eastern Europe: A MZURI pro-til hybrid machine case study. Agronomy 10(7), 925. https://doi.org/10.3390/agronomy10070925
  19. Jaskulska I., Romaneckas K., Jaskulski D., Gałęzewski L., Breza-Boruta B., Dębska B., Lemano-wicz J., 2020. Soil properties after eight years of the use of strip-till one-pass technology. Agronomy 10(10), 1596. https://doi.org/10.3390/agronomy10101596
  20. Korohou T., Okinda C., Li H., Torotwa I., Ding Q., Abbas A., 2022. Effect of no-till precise seed-ing on wheat (Triticum aestivum L.) population quality at the emergence stage. J. Anim. Plant Sci. 32(1), 186–198. https://doi.org/10.36899/JAPS.2022.1.0414
  21. Kriaučiūnienė Z., Saldukaitė L., Buragienė S., Adamavičienė A., Zabrodskyi A., Šarauskis E., 2023. Effect of strip tillage and direct seeding on winter wheat yield, diesel consumption and envi-ronment. Actual Tasks on Agricultural Engineering. Proceedings of the 49th International Symposium Opatija, Croatia, 28th February – 2nd March 2023, 41–49. https://atae.agr.hr/49th_ATAE_proceedings.pdf
  22. Kriaučiūnienė Z., Saldukaitė-Sribikė L., Zabrodskyi A., Adamavičienė A., Buragienė S., Šarauskis E., 2024. Impact of strip-till and no-till systems on soil, crop, and environment. W: Abstract proceedings for the: 22nd International Soil Tillage Research Organisation Conference, Virginia Beach, Virginia, United States of America, 22–27 September 2024, 48–49. https://hdl.handle.net/20.500.12259/271281
  23. Kumar D.V., Ramana C., Reddy K.V.S., Kaleemullah S., Reddy B.R., 2023. Optimization of ma-chine and operational parameters in the development of stubble manager cum crop planter. Int. J. Plant Soil Sci. 35(16), 12–23. https://doi.org/10.9734/ijpss/2023/v35i163124
  24. Lamichhane J., Soltani E., 2020. Sowing and seedbed management methods to improve establishment and yield of maize, rice and wheat across drought-prone regions: A review. J. Agric. Food Res. 2, 100089. https://doi.org/10.1016/j.jafr.2020.100089
  25. Leskovar D., Othman Y., Dong X., 2016. Strip tillage improves soil biological activity, fruit yield and sugar content of triploid watermelon. Soil Tillage Res. 163, 266–273. https://doi.org/10.1016/j.still.2016.06.007
  26. Liu L., Wang X., Zhong X., Zhang X., Geng Y., Zhou H., Chen T., 2024. Design and experiment of furrow side pick-up soil blade for wheat strip-till planter using the discrete element method. J. Agric. Eng. 55(1), 1546. http://dx.doi.org/10.4081/jae.2023.1546
  27. Lovarelli D., Bacenetti J., 2017. Seedbed preparation for arable crops: Environmental impact of alternative mechanical solutions. Soil Tillage Res. 174, 156–168. https://doi.org/10.1016/j.still.2017.06.006
  28. Melnyk V., Artiomov M., Tsyganenko M., Romanashenko O., Anikeev O., 2021. Test results of co-seeding technology for forage production in Mix-Cropp farming system. W: Proceedings of 20th International Scientific Conference Engineering for Rural Development,
  29. May 26–28, 2021. Latvia University of Life Sciences and Technologies, 451–456. http://dx.doi.org/10.22616/ERDev.2021.20.TF095
  30. Mirzaev B.S., Ergashov G.H., Maiviatov F.M., Ravshanova N.B., Toshtemirov S.J., Begimkulova M.F., 2022. Justification of the parameters of the lister body. W: IOP Conference Series: Earth and Environmental Science 1076, 1, 012022. IOP Publishing. https://doi.org/10.1088/1755-1315/1076/1/012022
  31. Mitev G.V., Bratoev K., 2017. Experimental study of strip till machine. Int. Sci. J. Mech. Agric. Conserv. Resour. 63(1), 21–25.
  32. Morris N.L., Miller P.C.H., Orson J.H., Froud-Williams R.J., 2010. The adoption of noninversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment – A review. Soil Tillage Res. 108(1–2), 1–15. https://doi.org/10.1016/j.still.2010.03.004
  33. Nadykto V., Domeika R., Golub G., Kukharets S., Chorna T., Čėsna J., Hutsol T., 2023. Research on a machine–tractor unit for strip-till technology. AgriEngineering 5(4), 2184–2195. https://doi.org/10.3390/agriengineering5040134
  34. Peel M.C., Finlayson B.L., McMahon T.A., 2007. Updated world map of the Köppen–Geiger cli-mate classification. Hydrol. Earth Syst. Sci. 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
  35. Piechota T., 2017. Przegląd rynku maszyn do pasowej uprawy roli (strip-till). Technika Rolnicza, Ogrodnicza, Leśna 4, 2–4.
  36. Pieper J.R., Brown R.N., Amador J.A., 2015. Effects of three conservation tillage strategies on yields and soil health in a mixed vegetable production system. HortScience 50(12), 1770–1776. https://doi.org/10.21273/HORTSCI.50.12.1770
  37. Potratz D.J., Mourtzinis S., Gaska J., Lauer J., Arriaga F.J., Conley S.P., 2020. Strip‐till, other management strategies, and their interactive effects on corn grain and soybean seed yield. Agron. J. 112(1), 72–80. https://doi.org/10.1002/agj2.20067
  38. Różewicz M., Grabiński J., Wyzińska M., 2024. Effect of strip-till and cultivar on photosynthetic parameters and grain yield of winter wheat. Int. Agrophys. 38, 279–291. http://dx.doi.org/10.31545/intagr/188352
  39. Shargorodskiy S., Halanskyi V., 2024. Justification of construction and technological parameters of the strip-till section for strip tillage with the application of fertilizers. Eng. Energy Trans. AIC 1(124), 47–55. http://dx.doi.org/10.37128/2520-6168-2024-1-6
  40. Statistica 12. Data Analysis Software System, Version 12. TIBCO Software INC: Palo Alto, CA, USA, 2017. http://statistica.io
  41. Tabatabaeekoloor R., 2011. Soil characteristics at the in-row and inter-row zones after strip-tillage. Afr. J. Agric. Res. 6, 6598–6603. http://dx.doi.org/10.5897/AJAR11.722
  42. Townsend T.J., Ramsden S.J., Wilson P., 2016. How do we cultivate in England? Tillage practices in crop production systems. Soil Use Manag. 32(1), 106–117. https://doi.org/10.1111/sum.12241
  43. Trevini M., Benincasa P., Guiducci M., 2013. Strip tillage effect on seedbed tilth and maize produc-tion in Northern Italy as case study for the Southern Europe environment. Eur. J. Agron. 48, 50–56. https://doi.org/10.1016/j.eja.2013.02.007
  44. Vaitauskienė K., Šarauskis E., Romaneckas K., Jasinskas A., 2017. Design, development and field evaluation of row-cleaners for strip tillage in conservation farming. Soil Tillage Res. 174, 139–146. https://doi.org/10.1016/j.still.2017.07.006
  45. Wang Q., Wang B., Sun M., Sun X., Zhou W., Tang H., Wang J., 2023. Design and testing of an automatic strip-till machine for conservation tillage of corn. Agronomy 13(9), 2357. https://doi.org/10.3390/agronomy13092357
  46. Williams A., Davis A.S., Ewing P.M., Grandy A.S., Kane D.A., Koide R.T., Mortensen D.A., Smith R.G., Snapp S.S., Spokas K.A., Yannarell A.C., Jordan N.R., 2016. A comparison of soil hydrothermal properties in zonal and uniform tillage systems across the US Corn Belt. Ge-oderma 273, 12–19. https://doi.org/10.1016/j.geoderma.2016.03.010
  47. Yang Y., Fielke J., Ding Q., He R., 2018. Field experimental study on optimal design of the rotary strip-till tools applied in rice-wheat rotation cropping system. Int. J. Agric. Biol. Eng. 11(2), 88–94. https://doi.org/10.25165/j.ijabe.20181102.3347
  48. Yang Y., Hu Z., Gu F., Ding Q., 2023. Simulation and experimental study of the tillage mechanism for the optimal design of wheat rotary strip–tiller blades. Agriculture 13(3), 632. https://doi.org/10.3390/agriculture13030632

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.