Skip to main navigation menu Skip to main content Skip to site footer

Vol. 18 No. 5 (2019)

Articles

ARBUSCULAR MYCORRHIZAL FUNGAL-ASSOCIATED BACTERIA AFFECT MYCORRHIZAL COLONIZATION, ESSENTIAL OIL AND PLANT GROWTH OF Murraya koenigii L.

DOI: https://doi.org/10.24326/asphc.2019.5.4
Submitted: October 28, 2019
Published: 2019-10-28

Abstract

Murraya koenigii L. (family: Rutaceae) commonly called as curry leaf is a highly valued plant for aroma and medicinal value. The two dominant AM species Glomus mosseae and Acaulospora laevis were isolated from the rhizospheric soil of M. koenigii. A pot experiment was performed to see the interactive potential of G. mosseae and A. laevis alone or in combination with Pseudomonas fluorescens on M. koenigii. Various morphological and biochemical parameters were measured after 120 days. Overall results suggest that although, all co-inoculation treatments showed beneficial effects on all the growth, physiological and oil content. The overall results demonstrate that the co-inoculation of bioinoculants like P. fluorescens with AM fungi promotes higher AM colonization and spore number enhancing nutrient acquisition especially phosphorus (P), improving the rhizospheric condition of soil.

References

  1. Abu-Zeyad, R., Khan, A.G., Khoo, C. (1999). Occurrence of arbuscular mycorrhiza in Castanospermum australe A. Cunn. & C. Fraser and effects on growth and production of castanospermine. Mycorhizza, 9(2), 111–117.
  2. Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol., 24, 1–15.
  3. Barea, J.M., Jeffries, P. (1995). Arbuscular mycorrhizas in sustainable soil-plant systems. In: Mycorrhiza, Varma, A., Hocl, B. (eds). Springer, Berlin−Heidelberg, 521–560.
  4. Baum, C., El-Tohamy, W., Gruda, N. (2015). Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci. Hortic., 187, 131–141.
  5. Bertheau, Y. (1977). Etudes des phosphatases solubles des endomycorhizes à vésicules et arbuscules. DEA thesis, Universite de Dijon, France.
  6. Chaudhary, V., Kapoor, R., Bhatnagar, A.K. (2008). Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl. Soil Ecol., 40(1), 174–181.
  7. Colla, G., Rouphael, Y., Di Mattia, E., El-nakhel, C., Cardarelli, M. 2015. Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a Biostimulant to promote growth, yield and nutrient uptake of vegetable crops. J. Sci. Food Agric., 95, 1706–1715.
  8. Copetta, A., Lingua, G., Berta, G. (2006). Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza, 16(7), 485–494.
  9. Faisal, E.A., Yagoub S.O. and Elsheikh E.A.E., 2000. Effects of mycorrhizal inoculation and phosphorus application on the nodulation, mycorrhizal infection and yield components of faba bean grown under two different watering regimes. Khartoum J. Agric. Sci., 1(1), 137–151.
  10. Ferrol, N., Calvente, R., Cano, C., Barea, J.M., Azcón-Aguilar, C. (2004). Analysing arbuscular mycorrhizal fungal diversity in shrub-associated resource islands from a desertification-threatened semiarid Mediterranean ecosystem. Appl. Soil Ecol., 25(2), 123–133.
  11. Freitas, M.S., Martins, M.A., Curcino, I., Vieira, I.J. (2004) Yield and quality of essential oils of Mentha arvensis in response to inoculation with arbuscular mycorrhizal fungi. Pesq. Agropec. Bras, 39, 887–89
  12. Fries, L.L., Pacovsky, R.S., Safir, G.R., Kaminski, J. (1998). Phosphorus effect on phosphatase activity in endomycorrhizal maize. Physiol. Plant., 103(2), 162–171.
  13. Garcia-Gomez, R., Chavez-Espinosa, J., Mejia-Chavez, A., Duran, B.C. (2002). Short term effect of Glomus claroideum and Azospirillum brasilense on growth and root acid phosphatase activity of Carica papaya L. under phosphorus stress. Rev. Latinoam. Microbiol., 44, 31–37.
  14. George, E., Haussler, K., Vetterlein, D., Gorgus, E., Marschner, H. (1992). Water and nutrient translocation by hyphae of Glomus mosseae. Can. J. Bot., 70, 2130–2137.
  15. Gerdemann, J.W., Nicolson, T.H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc., 46(2), 235–244.
  16. Gianinazzi, S., Gianinazzi-Pearson, V., Dexheimer, J. (1979). Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. III. Ultrastructural localization of acid and alkaline phosphatase in onion roots infected by Glomus mosseae (Nicol. & Gerd.). New Phytol., 82(1), 127–132.
  17. Gray, E.J., Smith, D.L. (2005). Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol. Biochem., 37(3), 395–412.
  18. Gupta, D.K., Chatterjee, S., Datta, S., Veer, V., Walther, C. (2014). Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere, 108, 134–144.
  19. Gupta, M.L., Prasad, A., Ram, M., Kumar, S. (2002). Effect of the vesicular–arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Biores. Technol., 81(1), 77–79.
  20. Helgason, T., Fitter, A. (2005). The ecology and evolution of the arbuscular mycorrhizal fungi. Mycologist, 19(3), 96–101.
  21. Jackson, M.L. (1973). Soil chemical analysis. Prentice Hall of India Pvt. Ltd., New Delhi, pp. 485.
  22. Jangra, E., Yadav, K., Aggarwal, A. (2018). Potential role of arbuscular mycorrhizal fungi and Pseudomonas fluorescens on growth, physiological parameters, and yield of Capsicum frutescens L. Int. J. Veg. Sci., 24(2), 137–145.
  23. Johansson, J.F., Paul, L.R., Finlay, R.D. (2004). Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol. Ecol., 48(1), 1–13.
  24. Kapoor, R., Chaudhary, V., Bhatnagar, A.K. (2007). Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza, 17(7), 581.
  25. Kapoor, R., Giri, B., Mukerji, K.G. (2002). Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J. Microbiol. Biotechnol., 18(5), 459–463.
  26. Kapoor, R, Giri, B, Mukerji, KG (2004). Improved growth and essential oil yield and quality in Foeniculum vulgare Mill on mycorrhizal inoculation supplemented with P-fertilizer. Biores. Technol., 93, 307–311.
  27. Karagiannidis, N., Thomidis, T., Lazari, D., Panou-Filotheou, E., Karagiannidou, C. (2011). Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Sci. Hortic., 129(2), 329–334.
  28. Khaosaad, T., Vierheilig, H., Nell, M., Zitterl-Eglseer, K., Novak, J. (2006). Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza, 16(6), 443–446.
  29. Linderman, R.G. (1992). Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Mycorrhizae in suistainable agriculture, Bethlenfalvay, G.J., Linderman, R.G. (eds). ASA Special Publication 54, Madison, 45–70
  30. Liu, J., Wu, L., Wei, S., Xiao, X., Su, C., Jiang, P., Yu, Z. (2007). Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul., 52(1), 29–39.
  31. Maffei, M., Mucciarelli, M. (2003). Essential oil yield in peppermint/soybean strip intercropping. Field Crops Res., 84(3), 229–240.
  32. Marschner, H., Dell, B. (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil, 159, 89–102
  33. Mathur, N., Vyas, A. (2000). Influence of arbuscular mycorrhizae on biomass production, nutrient uptake and physiological changes in Ziziphus mauritiana Lam. under water stress. J. Arid Env., 45(3), 191–195.
  34. McArthur, D.A., Knowles, N.R. (1993). Influence of vesicular-arbuscular mycorrhizal fungi on the response of potato to phosphorus deficiency. Plant Physiol., 101(1), 147–160.
  35. Menge, J.A., Timmer, L.W. (1982). Procedures for inoculation of plants with vesicular-arbuscular mycorrhizae in the laboratory, greenhouse, and field. In: Methods and principles of mycorrhizal research, Schenck, N.C. (ed.). Am. Phytopath. Soc., St. Paul, 59–68.
  36. Nell, M., Voetsch, M., Vierheilig, H., Steinkellner, S., Zitterl-Eglseer, K., Franz, C., Novak, J. (2009). Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.). J. Sci. Food Agric., 89(6), 1090–1096.
  37. Newman, E.I., Reddell, P. (1987). The distribution of mycorrhizas among families of vascular plants. New Phytol., 106(4), 745–751.
  38. Ortas, I., Ustuner, O. (2014). Determination of different growth media and various mycorrhizae species on citrus growth and nutrient uptake. Sci. Hortic., 166, 84–90.
  39. Phillips, J.M., Hayman, D.S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc., 55(1), 158–IN18.
  40. Rachel, E.K., Reddy, S.R., Reddy, S.M. (1992). Seedling preinoculation within AM fungi on transplant survival and growth of sunflower. Proc. Natl. Acad. Sci. Technol, 2, 431–439.
  41. Rasooli, I., Mirmostafa, S.A. (2003). Bacterial susceptibility to and chemical composition of essential oils from Thymus kotschyanus and Thymus persicus. J. Agric. Food Chem., 51(8), 2200–2205.
  42. Sadaghiani, R.H., Hassani, A, Barin, M., Younes Rezaee Danesh, R.Y., Sefidkon, F. (2010) Effects of arbuscular mycorrhizal (AM) fungi on growth, essential oil production and nutrients uptake in basil. J. Med. Plants Res., 4(21), 2222–2228.
  43. Saini, S.C., Reddy, G.B.S., Birari, P. (2013). Assessment of quality of curry leaves (Murraya koenigii). Int. J.Pharma. Sci. Invent., 2(10), 13–17.
  44. Saini, V.K., Bhandari, S.C., Tarafdar, J.C. (2004). Comparison of crop yield, soil microbial C, N and P, N-fixation, nodulation and mycorrhizal infection in inoculated and non-inoculated sorghum and chickpea crops. Field Crop. Res., 89(1), 39–47.
  45. Schenck, N.C., Perez, Y. (1990). Manual for the identification of VA mycorrhizal fungi.Synergistic Publications, Gainesville.
  46. Scheublin, T.R., Ridgway, K.P., Young, J.P.W., Van Der Heijden, M.G. (2004). Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl. Environ. Microbiol., 70(10), 6240–6246.
  47. Singh, S., Kapoor, K.K. (1999). Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol. Fertil. Soils, 28(2), 139–144.
  48. Smith SE, Smith FA, Jakobsen I. (2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol., 133, 6–20.
  49. Smith, S.E., Read, D.J. (1997). Mycorrhizal Symbiosis. Biol. Plant., 40(1), 154–156
  50. Smith, F.A., Grace, E.J., Smith, S.E. (2009). More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbiosis. New Phytol., 182, 347–358.
  51. Smith, S. E., Read, D. J. (2010). Mycorrhizal symbiosis. Academic Press, London, pp.769
  52. Tabatabai, M.A., Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem., 1(4), 301–307.
  53. Tarraf, W., Ruta, C., Tagarelli, A., De Cillis, F., De Mastro, G. (2017). Influence of arbuscular mycorrhizae on plant growth, essential oil production and phosphorus uptake of Salvia officinalis L. Ind. Crops Prod., 102, 144–153.
  54. Vázquez, M.M., César, S., Azcón, R., Barea, J. M. (2000). Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl. Soil Ecol., 15(3), 261–272.
  55. Vosátka, M., Gryndler, M. (1999). Treatment with culture fractions from Pseudomonas putida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Appl. Soil Ecol., 11(2–3), 245–251.
  56. Wiedenhoeft, A.C. (2006). Plant nutrition. Infobase Publishing, New York, pp. 136.
  57. Wu, Q.S., Zou, Y.N. (2009). Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ., 55(10), 436–442.
  58. Zheljazkov, V.D., Cantrell, C.L., Evans, W.B., Ebelhar, M.W., Coker, C. (2008). Yield and composition of Ocimum basilicum L. and Ocimum sanctum L. grown at four locations. Hort. Sci., 43(3), 737–741.
  59. Zubek, S., Stojakowska, A., Anielska, T., Turnau, K. (2010). Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L. Mycorrhiza, 20(7), 497–504.

Downloads

Download data is not yet available.

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.