Skip to main navigation menu Skip to main content Skip to site footer

Vol. 20 No. 5 (2021)

Articles

Development of biotic stress resistant F1 interspecific hybrid rootstock derived from Solanum lycopersicum and Solanum habrochaites

DOI: https://doi.org/10.24326/asphc.2021.5.10
Submitted: February 27, 2020
Published: 2021-10-29

Abstract

Tomato is major horticultural plant consumed worldwide. Biotic stress (nematodes, fungus and bacteria) has negative effect on tomato production due to causing reduced yield or plant death. Rootstocks confer resistance to soil-borne pathogen are considered the most effective and environment friendly approach for such a stress management. Thus, development of genetic resources having multiple resistance genes is essential for sustainable tomato breeding. Solanum habrochaites is one of the most studied wild tomato species due to its high genetic potential for biotic and abiotic stresses. In the present study, rootstock potential of an interspecific F1 hybrid derived from S. habrochaites was evaluated as using resistance genes (Frl, I-2, I-3, Mi-3, Pto Ty-1, Ty-3 and Sw-5) specific molecular markers for 6 major tomato diseases and 31 fruit quality traits. The study reported that F1 hybrid had resistance alleles for 5 genes (Frl, I-2, I-3, Pto and Sw-5) confer resistance to fusarium crown rot disease, crown – root rot disease, race 2 and 3 of Fusarium oxysporum f. sp. radicis lycopersici, bacterial speck and tomato spotted wilt virus (TSWV), respectively. Despite high performance of F1 hybrid for biotic stress, the study pointed S. habrochaites specific graft incompatibility due to poor rate of grafting efficiency, small fruit formation and low yield. This is the first comprehensive study evaluated the horticultural performance of an interspecific hybrid in tomato.

References

  1. Ashita, E. (1927). Grafting of watermelons. Agr. Uwsl., 1, 9 [in Japanese].
  2. Cohen, S., Naor, A. (2002). The effect of three rootstocks on water use, canopy conductance and hydraulic parameters of apple trees and predicting canopy from hydraulic conductance. Plant, Cell Environ., 25(1), 17–28. https://doi.org/10.1046/j.1365-3040.2002.00795.x
  3. Dianese, E.C., de Fonseca, M.E., Goldbach, R., Kormelink, R.G., Inoue-Nagata, A.K., Resende, R.O., Boiteux, L.S. (2010). Development of a locus-specific, co-dominant SCAR marker for assisted-selection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions. Mol. Breeding, 25(133). https://doi.org/10.1007/s11032-009-9313-8
  4. Djidonou, D., Simonne, A.H., Koch, K.E., Brecht, J.K., Zhao, X. (2016). Nutritional quality of field-grown tomato fruit as affected by grafting with interspecific hybrid rootstocks. HortSci., 51(12), 1618–1624. https://doi.org/10.21273/HORTSCI11275-16
  5. Doyle, J.J., Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull., 19(1), 11–15.
  6. FAO. (2018). Statistics of food and agriculture organization of the united nations. Available: https://www.fao.org/3/CA1796EN/ca1796en.pdf? [date of access: 18.11.2021].
  7. Fischer, I., Camus‐Kulandaivelu, L., Allal, F., Stephan, W. (2011). Adaptation to drought in two wild tomato species: the evolution of the Asr gene family. New Phytol., 190(4), 1032–1044. https://doi.org/10.1111/j.1469-8137.2011.03648.x
  8. Frusciante, L., Carli, P., Ercolano, M.R., Pernice, R., Di Matteo, A., Fogliano, V., Pellegrini, N. (2007). Antioxidant nutritional quality of tomato. Mol. Nutr. Food Res., 51(5), 609–617. https://doi.org/10.1002/mnfr.200600158
  9. Garcia, B.E., Mejía, L., Salus, M.S., Martin, C.T., Seah, S., Williamson, V.M., Maxwell, D.P. (2007). A co-dominant SCAR marker, Mi23, for detection of the Mi-1.2 gene for resistance to root-knot nematode in tomato germplasm. Available: http://invirlab.plantpath.wisc.edu/GeminivirusResistantTomatoes/Markers/MAS-Protocols/Mi23-SCAR.pdf [date of access: 18.11.2021].
  10. Hemming, M.N., Basuki, S., McGrath, D.J., Carroll, B., Jones, D.A. (2004). Fine mapping of the tomato I-3 gene for fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3. Theor. Appl. Genet., 109, 409–418. https://doi.org/10.1007/s00122-004-1646-4
  11. Ibrahim, M., Munira, M.K., Kabir, M.S., Islam, A.K.M.S, Miah, M.M.U. (2001). Seed germination and graft compatibility of wild Solanum as rootstock of tomato. Online Journal of Biological Sciences., 1(8),701-703.Jaksch, T., Kell, K. (1997). Grafting tomatoes ensures higher yields. Gemüse Münch., 33(5), 345–346.
  12. Ji, Y., Schuster, D.J., Scott, J.W. (2007). Ty-3, a begomo virüs resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol. Breed., 20, 271–284. https://doi.org/10.1007/s11032-007-9089-7
  13. Kawaguchi, M., Taji, A., Backhouse, D., Oda, M. (2008). Anatomy and physiology of graft incompatibility in solanaceous plants. J. Horticult. Sci. Biotechnol., 83(5), 581–588. https://dx.doi.org/10.1080/14620316.2008.11512427
  14. Keatinge, J.D.H., Lin, L.-J., Ebert, A.W., Chen, W.Y., Hughes, J.d’A., Luther, G.C., Wang, J.-F., Ravishankar, M. (2014). Overcoming biotic and abiotic stresses in the Solanaceae through grafting: current status and future perspectives. Biol. Agricult. Horticult., 30(4), 272–287. https://doi.org/10.1080/01448765.2014.964317
  15. Kell, K., Jaksch, T. (1998). Comparison of stocks in tomato, Gemüse Münch., 34(12), 700–704.
  16. King, S.R., Davis, A.R., Zhang, X., Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Sci. Horticult., 127(2), 106–111. https://doi.org/10.1016/j.scienta.2010.08.001
  17. Kurata, K. (1992). Transplant production robots in Japan. In: Transplant production systems. Springer, Dordrecht, 313–329. https://doi.org/10.1007/978-94-011-2785-1_17
  18. Lee, S.G., Choi, J.U., Kim, K.Y., Chung, J.H., Lee, Y.B. (1997). Effect of rootstocks and grafting methods on the growth and fruit quality of tomato (Lycopersicum esculentum Mill.). RDA J. Horticult. Sci., 39(2), 15–20.
  19. Lee, J.M., Oda, M. (2003). Grafting of herbaceous vegetable and ornamental crops. Horticult. Rev., 28, 61–124. https://doi.org/10.1002/9780470650851.ch2
  20. Leoni, S., Grudina, R., Cadinu, M., Madeddu, B., Carletti, M.G. (1991). The influence of four rootstocks on some melon hybrids and a cultivar in greenhouse. Acta Horticult., 287, 127–134. https://doi.org/10.17660/ActaHortic.1991.287.12
  21. Louws, F.J., Rivard, C.L., Kubota, C. (2010). Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci. Horticult., 127(2), 127–146. https://doi.org/10.1016/j.scienta.2010.09.023
  22. Mng’omba, S.A., Sileshi, G.W., Jamnadass, R., Akinnifesi, F.K., Mhango, J. (2012). Scion and Stock diameter size effect on growth and fruit production of Sclerocarya birrea (Marula) trees. J. Horticult. Forest., 4(9), 153–160.
  23. Mutlu, N., Demirelli, A., Ilbi, H., Ikten, C. (2015). Development of co-dominant SCAR markers linked to resistant gene against the Fusarium oxysporum f. sp. radicis-lycopersici. Theor. Appl. Genet., 128, 1791–1798. https://doi.org/10.1007/s00122-015-2547-4
  24. Oda, M., Nagata, M., Tsuji, K., Sasaki, H. (1996). Effect of scarlet eggplant rootstock on growth, yield, and sugar content of grafted tomato fruits. J. Japan. Soc. Horticult. Sci.., 65(3), 531–536.
  25. Oda, M. (1999). Grafting of vegetables to improve greenhouse production. Available: https://www.fftc.org.tw/en/publications/main/1383 [date of access: 18.11.2021].
  26. Pérez de Castro, A., Blanca, J.M., Díez, M.J., Viñals, F.N. (2007). Identification of a CAPS marker tightly linked to the Tomato yellow leaf curl disease resistance gene Ty-1 in tomato. Europ J. Plant Pathol., 117(4), 347–356. https://doi.org/10.1007/s10658-007-9103-2
  27. Rivard, C.L., O'Connell, S., Peet, M.M., Louws, F.J. (2010). Grafting tomato with interspecific rootstock to manage diseases caused by Sclerotium rolfsii and southern root-knot nematode. Plant Dis., 94(8), 1015–1021. https://doi.org/10.1094/PDIS-94-8-1015
  28. Samfield, D.M., Zajicek, J.M., Cobb, B.G. (1991). Rate and uniformity of herbaceous perennial seed germination and emergence as affected by priming. J. Am. Soc. Horticult. Sci., 116(1), 10–13.
  29. Staniaszek, M., Kozik, E.U., Marczewski, W. (2007). A CAPS marker TAO1902 diagonistic for the I-2 gene conferring resistance to Fusarium oxysporum f. sp. Lycopersici race 2 in tomato. Plant Breed., 126(3), 331–333. http://dx.doi.org/10.1111/j.1439-0523.2007.01355.x
  30. Turhan, A., Ozmen, N., Serbeci, M.S., Seniz, V. (2011). Effects of grafting on different rootstocks on tomato fruit yield and quality. Horticult. Sci., 38(4), 142–149. https://doi.org/10.17221/51/2011-HORTSCI
  31. UPOV (2001). Guidelines for the conduct of tests for distinctness, uniformity and stability. Tomato. Available: https://www.upov.int/en/publications/tg-rom/tg044/tg_44_10.pdf [date of access: 18.11.2021].
  32. Yamakawa, B. (1983). [Grafting]. In: Vegetable handbook, Nishi, K., 141–153 [in Japanese].
  33. Yang, W., Francis, D.M. (2005). Marker-assisted selection for combining resistance to bacterial spot and bacterial speck in tomato. J. Am. Soc. Horticult. Sci., 130(5), 716–721. http://dx.doi.org/10.21273/JASHS.130.5.716
  34. Yetişir, H., Yarşi, G., Sari, N. (2004). Sebzelerde Aşilama [Grafting in vegetables]. Bahçe, 33(1–2), 27–37 [in Turkish].
  35. Yücel, S., Elekçioğlu, I.H., Can, C., Söğüt, M.A., Özarslandan, A. (2007). Alternative treatments to methyl bromide in the Eastern Mediterranean region of Turkey. Turk. J. Agricult. Forest., 31(1), 47–53.
  36. Zhang, C.L., Zhang, Y.D., Lu, L.W., Zhu, J.C. (1995). On the potassium uptake of the graft plants of diffrrent varieties of tomato. J. Nanjing Agricult. Univ., 18(3), 72–80.

Downloads

Download data is not yet available.

Similar Articles

<< < 20 21 22 23 24 25 26 27 28 29 > >> 

You may also start an advanced similarity search for this article.