Skip to main navigation menu Skip to main content Skip to site footer

Vol. 19 No. 2 (2020)

Articles

ANTIOXIDANT POTENTIAL OF TOMATO (SOLANUM LYCOPERSICUM L.) SEEDLINGS AS AFFECTED BY THE EXOGENOUS APPLICATION OF ORGANOIODINE COMPOUNDS

DOI: https://doi.org/10.24326/asphc.2020.2.1
Submitted: April 15, 2020
Published: 2020-04-15

Abstract

Salicylic acid is one of the regulatory compounds involved in numerous processes in plants. Previous studies indicated that also its halogen derivatives may exhibit similar roles. The aim of the work was to evaluate the influence of iododerivatives of salicylic acid such as: 5-iodosalicylc acid (5I-SA) and 3,5-diiodosalicylic acid (3,5diI-SA) on selected aspects of antioxidant capacity of tomato seedlings. The efficiency of improving iodine accumulation in tomato seedlings was also studied. No tested organoiodine compound had a negative effect on the growth and development of tomato seedlings. The presence of iodosalicylic acids in the nutrient solution led to a decrease of the content of salicylic acid, ascorbic acid and phenolic compounds in tomato seedlings. A modifying effect of tested organoiodine compounds on the antioxidant activity of tomato seedling extracts varied with respect to analyzed enzyme and applied assays. It has been confirmed that higher plants can take up and accumulate iodine from organoiodine compounds in levels not causing any symptoms of toxicity.

References

  1. Agarwal, S., Sairam, R.K., Srivastava, G.C., Tyagi, A., Meena, R.C. (2005). Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Sci. 169, 559–570. DOI: 10.1016/j.plantsci.2005.05.004
  2. Apak, R., Güclü, K., Özyürek, M., Esin Karademir, S. (2010). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem., 52, 7970–7981. DOI: 10.1021/jf048741x
  3. Beers, R.F., Sizer, I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem., 195(1), 133–140.
  4. Benzie, I.F.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem., 239, 70–76. DOI: 10.1006/abio.1996.0292
  5. Blasco, B., Rios, J.J., Cervilla, L.M., Sánchez-Rodrigez, E., Ruiz, J.M., Romero, L. (2008). Iodine biofortification and antioxidant capacity of lettuce: potential benefits for cultivation and human health. Ann. Appl. Biol., 152(3), 289–99. DOI: 10.1111/j.1744-7348.2008.00217.x
  6. Blokhina, O., Virolainen, E., Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot., 91(2), 179–194. DOI: 10.1093/aob/mcf118
  7. Boudet, A.M. (2007). Evolution and current status of research in phenolic compounds. Phytochemistry, 68, 2722–2735. DOI: 10.1016/j.phytochem.2007.06.012
  8. Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Sci. Technol., 28, 25–30. DOI: 10.1016/S0023-6438(95)80008-5
  9. Caffagni, A., Arru, L., Meriggi, P., Milc, J., Perata, P., Pecchioni, N. (2011). Iodine fortification plant screening process and accumulation in tomato fruits and potato tubers. Commun. Soil Sci. Plant Anal., 42(6), 706–718. DOI: 10.1080/00103624.2011.550372
  10. Chen, Y.E., Cui, J.M., Li, G.X., Yuan, M., Zhang, Z.W., Yuan, S., Zhang, H.Y. (2016). Effect of salicylic acid on the antioxidant system and photosystem II in wheat seedlings. Biol. Plant., 60(1), 139–147. DOI: 10.1007/s10535-015-0564-4
  11. Choudhury, S., Panda, S.K. (2004). Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulg. J. Plant Physiol., 30(3–4), 95–110.
  12. Coolen, S.A., Huf, F.A., Reijenga, J.C. (1998). Determination of free radical reaction products and metabolites of salicylic acid using capillary electrophoresis and micellar electrokinetic chromatography. J. Chromatog. B, 717, 119–124. DOI: 10.1016/s0378-4347(98)00289-8
  13. Dai, J.L., Zhu, Y.G., Zhang, M., Huang, Y.Z. (2004). Selecting iodine-enriched vegetables and the residual effect of iodate application to soil. Biol. Trace Elem. Res., 101(3), 265–276. DOI: 10.1385/BTER:101:3:265
  14. Dat, J.F., Lopez-Delgado, H., Foyer, C.H., Scott, I.M. (2000). Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. J. Plant Physiol., 156(5–6), 659–665. DOI: 10.1016/S0176-1617(00)80228-X
  15. Dresler, S., Maksymiec, W. (2013). Capillary zone electrophoresis for determination of reduced and oxidized ascorbate and glutathione in roots and leaf segments of Zea mays plants exposed to Cd and Cu. Acta Sci. Pol. Hort. Cult., 12(6), 143–155.
  16. Durner, J., Klessig, D.F. (1995). Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. P. Natl. Acad. Sci. USA, 92(24), 11312–11316. DOI: 10.1073/pnas.92.24.11312
  17. Giovanelli, G., Buratti, S. (2009). Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem., 112(4), 903–908. DOI: 10.1016/j.foodchem.2008.06.066
  18. Gonzali, S., Kiferle, C., Perata, P. (2017). Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability. Curr. Op. Biotech., 44, 16–26. DOI: 10.1016/j.copbio.2016.10.004
  19. Guan, L., Scandalios, J.G. (1995). Developmentally related responses of maize catalase genes to salicylic acid. P. Natl. Acad. Sci. USA, 92(13), 5930–5934. DOI: 10.1073/pnas.92.13.5930
  20. Hayat, S., Hasan, S.A., Fariduddin, Q., Ahmad, A. (2008). Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. J. Plant Int., 3(4), 297–304.
  21. Hayat, Q., Hayat, S., Irfan, M., Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment. Environ. Exp. Bot., 68, 14–25. DOI: 10.1016/j.envexpbot.2009.08.005
  22. Janda, T., Szalai, G., Tari, I., Paldi, E. (1999). Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta, 208(2), 175–180. DOI: 10.1007/s004250050547
  23. Kang, G.Z., Wang, Z.X., Sun, G.C. (2003). Participation of H2O2 in enhancement of cold chilling by salicylic acid in banana seedlings. Acta Bot. Sin., 45, 567–573.
  24. Knörzer, O. C., Lederer, B., Durner, J., Böger, P. (1999). Antioxidative defense activation in soybean cells. Physiol. Plant., 107(3), 294–302.
  25. Lin, J.S., Wang, G.X. (2002). Doubled CO2 could improve the drought tolerance better in sensitive cultivars than in tolerant cultivars in spring wheat. Plant Sci., 163(3), 627–637. DOI: 10.1016/S0168-9452(02)00173-5
  26. Mishra, K., Ojha, H., Chaudhury, N.K. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chem., 130(4), 1036–1043. DOI: 10.1016/j.foodchem.2011.07.127
  27. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22(5), 867–880.
  28. Panda, S.K., Patra, H.K. (2007). Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. Acta Physiol. Plant., 29, 567–575.
  29. PN-EN 15111 (2008). Food stuffs – Determination of trace elements – determination of iodine by ICP-MS (Inductively Coupled Plasma Mass Spectrometry). Polish Committee of Standardization, Warsaw.
  30. Prior, R.L., Wu, X., Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agr. Food Chem., 53(10), 4290–4302. DOI: 10.1021/jf0502698
  31. Reuveni, R., Shimoni, M., Karchi, Z., Kuc, J. (1992). Peroxidase activity as a biochemical marker for resistance of muskmelon (Cucumis melo) to Pseudoperonospora cubensis. Phytopathology, 82(7), 749–753.
  32. Rice-Evans, C., Miller, N., Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends Plant Sci., 2(4), 152–159.
  33. Rocher, F., Chollet, J.F., Jousse, C., Bonnemain, J.L. (2006). Salicylic acid, an ambimobile molecule exhibiting a high ability to accumulate in the phloem. Plant Physiol., 141(4), 1684–1693. DOI: 10.1104/pp.106.082537
  34. Sady, W., Smoleń, S., Ledwożyw-Smoleń, I. (2014). Methods of vegetables biofortification in iodine in hydroponics. Patent application no. P.410806 filed into the Polish Patent Office on 30 XII 2014.
  35. Safari, S., Soleimani, M.J., Mohajer, A., Fazlikhani, L. (2013). Possible structure-activity profile of salicylate derivatives: their relationship on induction of systemic acquired resistance. Intern. J. Agric. Technol., 9(5), 1215–1225.
  36. Siegrist, J., Jeblick, W., Kauss, H. (1994). Defense responses in infected and elicited cucumber (Cucumis sativus L.) hypocotyl segments exhibiting acquired resistance. Plant Physiol., 105, 1365–1374. DOI: 10.1104/pp.105.4.1365
  37. Smoleń, S., Ledwożyw-Smoleń, I., Sady, W. (2016). The role of exogenous humic and fulvic acids in iodine biofortification in spinach (Spinacia oleracea L.). Plant Soil, 402, 129–143. DOI: 10.1007/s11104-015-2785-x
  38. Smoleń, S., Ledwożyw-Smoleń, I., Halka, M., Sady, W., Kováčik, P. (2017). The absorption of iodine from 5-iodosalicylic acid by hydroponically grown lettuce. Sci. Hortic., 225, 716–725. DOI: 10.1016/j.scienta.2017.08.009
  39. Summermatter, K., Sticher, L., Métraux, J.P. (1995). Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv syringae. Plant Physiol., 108(4), 1379–1385. DOI: 10.1104/pp.108.4.1379
  40. Swain, T., Hillis, W.E. (1959). Phenolic constituents of Prunus domestica. I. Quantitative analysis of phenolic constituents. J. Sci. Food Agric., 10, 63–71. DOI: 10.1002/jsfa.2740100110
  41. Tirzitis, G., Bartosz, G. (2010). Determination of antiradical and antioxidant activity: basic principles and new insights. Acta Biochim. Pol., 57(1), 139–142. DOI: 10.18388/abp.2010_2386
  42. Wang, Y., Hu, J., Qin, G., Cui, H., Wang, Q. (2012). Salicylic acid analogues with biological activity may induce chilling tolerance of maize (Zea mays) seeds. Botany, 90, 845–855.
  43. Waterborg, J.H. (2009). The Lowry method for protein quantification. In: The proteins protocols handbook, Walker, J.M. (ed.). Humana Press, New York, USA, 7–10.
  44. Willekens, H., Villarroel, R., Van Montagu, M., Inzé, D., Van Camp, W. (1994). Molecular identification of catalases from Nicotiana plumbaginifolia (L.). FEBS Lett., 352(1), 79–83. DOI: 10.1016/0014-5793(94)00923-6
  45. Willekens, H., Inzé, D., Van Montagu, M., Van Camp, W. (1995). Catalases in plants. Mol. Breed., 1(3), 207–228. DOI: 10.1007/BF02277422
  46. Wysocka-Owczarek, M. (2001). Pomidory pod osłonami. Uprawa tradycyjna i nowoczesna. [Tomatoes under cover. The conventional and modern cultivation], 1st ed. Hortpress, Warsaw, Poland [in Polish].
  47. Xie, J., Schaich, K.M. (2014). Re-evaluation of the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. J. Agri. Food Chem., 62(19), 4251–4260. DOI: 10.1021/jf500180u
  48. Yusuf, M., Hasan, S.A., Ali, B., Hayat, S., Fariduddin, Q., Ahmad, A. (2008). Effect of salicylic acid on salinity induced changes in Brassica juncea. J. Integr. Plant Biol., 50(8), 1–4. DOI: 10.1111/j.1744-7909.2008.00697.x
  49. Zhao, Y.Q., Zheng, J.P., Yang, M.W., Yang, G.D., Wu, Y.N., Fu, F.F. (2011). Speciation analysis of selenium in rice samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta, 84(3), 983–988. DOI: 10.1016/j.talanta.2011.03.004
  50. Zimmermann, M.B., Boelaert, K. (2015). Iodine deficiency and thyroid disorders. Lancet Diabet. Endocrinol., 3(4), 286–295. DOI: 10.1016/S2213-8587(14)70225-6

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.