Skip to main navigation menu Skip to main content Skip to site footer

Vol. 19 No. 3 (2020)

Articles

CHANGES IN FRUIT YIELD AND PHOTOSYNTHESIS PARAMETERS IN DIFFERENT OLIVE CULTIVARS (Olea europaea L.) UNDER CONTRASTING WATER REGIMES

DOI: https://doi.org/10.24326/asphc.2020.3.12
Submitted: June 29, 2020
Published: 2020-06-29

Abstract

The evergreen tree olive (Olea europaea L.) is the only species of the genus Olea that produces edible fruits with high ecological and economic value. This tree species has developed a series of physiochemical mechanisms to tolerate drought stress and grow under adverse climatic environments. One of these mechanisms is photosynthesis activities, so that as yet little information achieved about the relations between olive production and photosynthetic parameters under drought conditions. An experiment was carried out during two consecutive years (2015–2017) to study the response of 20 different olive tree cultivars (Olea europaea L.) to drought stress. Several parameters like net photosynthetic rate (PN), stomatal conductance (GS), transpiration rate (TE), photosynthetic pigments (total chlorophyll, chlorophyll a, b and carotenoid) and fruit yield were measured. The results of combined analysis of variance for fruit yield and other measured traits showed that year, drought treatment, cultivar main effects and their interactions were highly significant. The results indicated that drought stress reduced all traits, however GS (42.80%), PN (37.21%) and TE (37.17%) significantly affected by drought. Lower reduction in photosynthetic performance (PN, GS and TE) in the cultivar T7 compared to other olive cultivars allowed them to maintain better fruit yield. Principal component analysis (PCA) identified two PCs that accounted for 82.04 and 83.27% of the total variation in photosynthetic parameters under optimal and drought stress conditions, respectively. Taken together, mean comparison, relative changes due to drought and biplot analysis revealed that cultivars ‘T7’, ‘Roghani’, ‘Koroneiki’, ‘Korfolia’ and ‘Abou-satl’ displayed better response against drought stress. According to our results, one olive cultivar namely ‘T7’, could be used in olive breeding programs to improve new high yielding cultivars with drought tolerance for use in the drought-prone environments.

References

  1. Ahmadi, J., Pour‐Aboughadareh, A., Fabriki Ourang, S., Mehrabi, A.A., Siddique, K.H.M. (2018). Wild relatives of wheat: Aegilops–Triticum accessions disclose differential antioxidative and physiological responses to water stress. Acta Physiol. Plant., 40, 90. DOI: 10.1007/s11738-018-2673-0
  2. Ahmed, C.B., Rouina, B.B., Sensoy, S., Boukhris, M., Abdallah, F.B. (2009). Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes. Environ. Exp. Bot., 67, 345–352. DOI: 10.1016/j.envexpbot.2009.07.006
  3. Bacelar, E.A., Santos, D.L., Moutinho-Pereira, J.M., Gonçalves, B.C., Ferreira, H.F., Correia, C.M. (2006). Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: changes on structure and chemical composition of foliage and oxidative damage. Plant. Sci., 170, 596–605. DOI: 10.1016/j.plantsci.2005.10.014
  4. Bouchemal, K., Bouldjadj, R., Belbekri, M.N., Ykhlef, N., Djekoun, A. (2016). Differences in antioxidant enzyme activities and oxidative markers in ten wheat (Triticum durum Desf.) genotypes in response to drought, heat and paraquat stress. Arch. Agron. Soil. Sci., 63, 710–722. DOI: 10.1080/03650340.2016.1235267
  5. Boussadia, O., Mariem, F.B., Mechri, B., Boussetta, W., Brahmn, M., El Hadjm S.B. (2008). Response to drought of two olive tree cultivars (cv. Koroneki and Meski). Sci Hortic., 116, 388–393. DOI: 10.1016/j.scienta.2008.02.016
  6. Centritto, M., Lauteri, M., Monteverdi, M.C., Serraj, R. (2009). Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage.
  7. J. Exp. Bot., 60, 2325–39. DOI: 10.1093/jxb/erp123
  8. Cochard, H., Coll, L., Roux, X.L., Amegilo, T. (2002). Unraveling the effects of plant hydraulics on stomatal closer during water stress in walnut. Plant. Physiol., 128, 282–290. DOI: 10.1104/pp.010400
  9. Comas, L.H., Becker, S.R., Cruz, V.M. V., Byrne, P.F., Dierig, D.A. (2013). Root traits contributing to plant productivity under drought. Front. Plant Sci., 4, 1–16. DOI: 10.3389/fpls.2013.00442
  10. Deng, X., Hu, Z.A., Wang, H.X., Wen, X.G., Kuang, T.Y. (2003). A comparison of photosynthetic apparatus of the detached leaves of the resurrection plant Boea hygrometrica with its non-tolerant relative Chirita heterotrichain response to dehydration and rehydration. Plant. Sci., 165, 851–861. DOI: 10.1016/S0168-9452(03)00284-X
  11. Dias, M., Correia, S., Serodio, J., Silva, A.M.S., Freitas, H., Santos, C. (2018). Chlorophyll fluorescence and oxidative stress endpoints to discriminate olive cultivars tolerance to drought and heat episodes. Sci. Hortic., 231, 31–35. DOI: 10.1016/j.scienta.2017.12.007
  12. Ergen, N.Z., Budak, H. (2009). Sequencing over 13000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. Plant. Cell. Environ., 32, 220–236. DOI: 10.1111/j.1365-3040.2008.01915.x
  13. FAOSTAT. (2015). Food and Agriculture Organization, FAOSTAT Database. Available at: http://faostat3fao.org/browse/Q/QC/E
  14. Fernandes-Silva, A.A., Ferreira, T.C., Correia, C.M., Malheiro, A.C., Villalobos, F.J. (2010). Influence of different irrigation regimes on crop yield and water use efficiency of olive. Plant. Soil., 333, 35–47. DOI: 10.1007/s11104-010-0294-5
  15. Fernandez, J.E., Moreno, F., Girón, I. F., Blázquez, O.M. (1997). Stomatal control of water use in olive tree leaves. Plant. Soil., 190, 179–192. DOI: 10.1023/A:1004293026973
  16. Filippou, M., Fasseas, C., Karabourniotis, G. (2007). Photosynthetic characteristics of olive tree (Olea europaea) bark. Tree Physiol., 27, 977–984. DOI: 10.1093/treephys/27.7.977
  17. Flexas, J., Medrano, H. (2002). Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann. Bot., 89, 183–189. DOI: 10.1093/aob/mcf027
  18. Gholami, R., Sarikhani, H., Arji, I. (2016). Effects of Deficit Irrigation on Some Physiological and Biochemical Characteristics of Six Commercial Olive Cultivars in Field Conditions. Iranian J. Hortic. Sci. Technol. (IJHST), 17(1), 39–52.
  19. Giorio, P., Sorrentino, G., d’Andria, R. (1999). Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit. Agric. Water Manag., 42, 95–104. DOI: 10.1016/S0098-8472(99)00023-4
  20. Guerfel, M., Boujnah, D., Baccouri, B., Zarrouk, M. (2007). Evaluation of morphological and physiological traits for drought tolerance in 12 Tunisian olive varieties (Olea europaea L.). J. Agron., 6, 356–361.
  21. Holding, D., Streich, A.M. (2013). Plant growth processes: Transpiration, photosynthesis, and respiration. University of Nebraska Cooperative Extension.
  22. Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Somasundaram, R., Panneerselvam, R. (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agri. Biol., 11, 100–105.
  23. Kadkhodaie, A., Razmjoo, J., Zahedi, M., Pessarakli, M. (2014). Selecting sesame genotypes for drought tolerance based on some physiochemical traits. Agron. J., 106, 111–118. DOI: 10.2134/agronj2013.0260
  24. Lauteri, M., Haworth, M., Serraj, R., Monteverdi, M.C., Centritto, M. (2014). Photosynthetic diffusional constraints affect yield in drought stressed rice cultivars during flowering. PloS ONE, 9, e109054. DOI: 10.1371/journal.pone.0109054
  25. Lichtenthaler, H.K., Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans., 11, 591–592.
  26. Moriana, A., Villalobos, F., Fereres, J. (2002). Stomatal and photosynthetic responses of olive (Olea europaea L.) leaves to water deficits. Plant Cell Environ., 25, 395–405. DOI: 10.1046/j.0016-8025.2001.00822.x
  27. Percival, G.C., Sheriffs, C.N. (2002). Identification of drought-tolerance woody perennials using chlorophyll fluorescence. J. Arboric., 28, 215–223.
  28. Pinherio, C., Chaves, M.M. (2011). Photosynthesis and dro- ught: can we make metabolic connections from available data? J. Exp. Bot., 63, 869–882. DOI: 10.1093/jxb/erq340
  29. Pour-Aboughadareh, A., Ahmadi, J., Mehrabi, A.A., Etminan, A., Moghaddam, M., Siddique, K.H.M. (2017). Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement. Acta Physiol. Plant., 39, 106. DOI: 10.1007/s11738-017-2403-z
  30. Pradhan, G., Prasad Vara Fritz, A.K., Kirkhan, M., Gill, B. (2012). Response of Aegilops species to drought stress during reproductive stage of development. Func. Plant Biol., 39, 51–59. DOI: 10.1071/FP11171
  31. Sorrentio, G., Muzzaupo, I., Muccilli, S., Timpanaro, N., Russo, M.P., Guardo, M., Rapisarda, P., Romeo, F.V. (2016). New accessions of Italian table olives (Olea europaea): Characterization of genotypes and quality of brined products. Sci. Hortic., 213, 34–41. DOI: 10.1016/j.scienta.2016.10.016
  32. Tognetti, R., d’Andria, R., Lavini, A., Morelli, G. (2006). The effect of deficit irrigation on crop yield and vegetative development of Olea europaea L. (cvs. Frantoio and Leccino). Eur. J. Agron., 25, 356–364. DOI: 10.1016/j.eja.2006.07.003

Downloads

Download data is not yet available.