Skip to main navigation menu Skip to main content Skip to site footer

Vol. 16 No. 1 (2017)

Articles

INFLUENCE OF HABITAT CONDITIONS ON CHEMICAL COMPOSITION AND CONTENT OF ISOTOPES IN SEA BUCKTHORN (Hippophae rhamnoides L.) LEAVES

Submitted: September 24, 2020
Published: 2017-02-28

Abstract

The numerous publications on the positive impact of sea buckthorn and its products on human health con-cern mainly the fruits and seeds. However, there is little data relating to the properties of sea buckthorn leaves. The main objective of this study was to evaluate the chemical composition and isotope content in the leaves of sea buckthorn Hippophae rhamnoides L. depending on where its existence. The habitat condi-tions significantly differentiated the studies traits. Mean crude protein content in the leaves reached 235.0 g∙kg–1 d. m. The most proteins contain plants growing on native soil in the Dolna Odra Power Station. The ash content, fat, fiber and total carbohydrates was significantly higher in the leaves of sea buckthorn growing on sandy soil reclaimed from using ash from coal with NPK 60 – 70 – 70 + sludge. Their average concentration was: 49.2, 63.0, 128.1, 587.4 g∙kg–1 d. m., respectively. The concentration of micronutrients was varied and depended significantly from the place of living plants. A higher level of δ15N found in sea buckthorn grown on land reclaimed and fertilized with NPK. The conditions living of sea buckthorn didn’t differentiate δ13C value. It cannot be unequivocally determined whether the results of the study on the in-fluence of habitat conditions on chemical and isotope composition of sea buckthorn leaves are permanent. Therefore, it is necessary to continue the research.

References

  1. Asaolu, S.S., Adefemi, O.S., Oyakilome, I.G., Ajibulu, K.E., Asaolu, M.F. (2012). Proximate and mineral composition of Nigerian leafy vegetables. J. Food Res., 1(3), 214–218.
  2. AOAC (2012). Association of Official Analytical Chem-ists. Official Methods of Analysis. 18th ed. Gaithersburg, MD, USA 2012.
  3. Bateman, S.A., Kelly, S.D., Woolfe, M. (2007). Nitrogen isotope composition of organically and conventionally grown crops. J. Agric. Food Chem., 55, 2664–2670.
  4. Bolesławska, I., Przysławski, J., Schlegel-Zawadzka, M., Grzymisławski, M. (2009). The contents of mineral compounds in daily food rations taken by men and woman under traditional and low carbohydrate „opiti-mal” diet. ŻNTJ., 4(65), 303–311.
  5. Bosiacki, M., Roszyk, J. (2012). Nickel and chromium content in the edible parts of selected vegetables min-eralised by two methods. Bromat. Chem. Toksykol., 45(2), 125–130.
  6. Brandt, K., Molgaard, J.P. (2001). Organic agriculture: does it enhance or reduce the nutritional value of plant foods? J. Sci. Food Agric., 81, 924–931.
  7. Cichosz, G., Czeczot, H. (2013). Controversies around diet proteins. Pol. Merk. Lek., 35(210), 397–401.
  8. Duda-Chodak, A., Błaszczyk, U. (2008). The impact of nickel on human health. J. Elem., 13(4), 685–696.
  9. Elango, R., Ball, R.O., Pencharz, P.B. (2012). Recent advances in determining protein and amino acid re-quirements in humans. Br. J. Nutr., 108, 22–30.
  10. Eskicioglu, V., Kamiloglu, S., Nilufer-Erdil, D. (2015). Antioxidant dietary fibres: Potential functional food in-gredients from plant processing by-products. Czech J. Food Sci., 33, 487–499.
  11. Georgi, M., Voerkelius, S., Rossmann, A., Graßmann, J., Schnitzler, W.H. (2005). Multielement isotope ratios of vegetables from integrated and organic production. Plant Soil, 275, 93–100.
  12. Gonella, M., Serio, F., Conversa, G., Santamaria, P. (2004). Production and nitrate content in lamb’s lettuce grown in floating system. Acta Hort., 644, 61–67.
  13. Grey, A., Widén, C.B., Adlercreutz, P., Rumpunen, K., Duan, R.D. (2010). Antiproliferative effects of sea buckthorn (Hippophae rhamnoides L.) extracts on hu-man colon and liver cancer cell lines. Food Chem., 120, 1004–1010.
  14. Kashif, M., Ullah, S. (2013). Chemical composition and minerals analysis of Hippophae rhamnoides, Aza-dirachta indica, Punica granatu and Ocimum sanctum leaves. World J. Dairy Food Sci., 8(1), 67–73.
  15. Kaur, G.J., Arora, D.S. (2009). Antibacterial and phyto-chemical screening of Anythum graveolens, Foenicu-lum vulgare and Trachyspermum ammi. BMC Com-plement. Altern. Med., 9, 30–39.
  16. Kobus-Moryson, M., Gramza-Michałowska, A., Kobus-Cisowska, J., Korczak, J. (2014). Contents of selected elements in stevia extracts (Stevia rebaudiana Bertoni). Probl. Hig. Epidemiol., 95(2), 445–448.
  17. Kochhar, A., Nagi, M., Sachdeva, R. (2006). Proximate composition, available carbohydrates, dietary fibre and anti nutritional factors of selected traditional medicinal plants. J. Hum. Ecol., 19(3), 195–199.
  18. Król-Kogus, B., Krauze-Baranowska, M. (2011). Fenu-greek (Trigonella foenum-graecum L.) – traditional herb on the background of the research studies. Post. Fitoter., 3, 185–190.
  19. Kudełka, W., Kosowska, A. (2008). Components of spices and herbs determining their functional properties and their role in human nutrition and prevention of diseas-es. Cracow Rev. Econ. Manag., 78, 83–111.
  20. Marie, P.J., Ammann, P., Boivin, G., Rey, C. (2001). Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tiss. Int., 69, 121–129.
  21. Nakano, A., Uehara, Y., Yamauchi, A. (2003). Effect of organic and inorganic fertigation on yields, δ15N val-ues, and δ13C values of tomato (Lycopersicon esculen-tum Mill. cv. Saturn). Plant Soil., 255, 343–349.
  22. Nawirska-Olszańska, A., Kucharska, A.Z., Sokół-Łętowska, A. (2010). Dietary fibre fractions in cornel-ian cherry fruit (Cornus mas L.). ŻNTJ., 2(69), 95–103.
  23. Nielsen, F.H. (1993). Is nickel nutritionally important? Nutr. Tod., 28, 14–19.
  24. Niesteruk, A., Lewandowska, H., Golub, Ż., Świsłocka, R., Lewandowski, W. (2013). Let’s get interested with sea buckthorn. Preparations of sea buckthorn as food addi-tives and assessment of their market in Poland. Kos-mos., 62, 4(301), 571–581.
  25. Ötles, S., Cagindi, Ö. (2006). Cereal based functional foods and nutraceuticals. Acta Sci. Pol. Technologia Alimentaria, 5(1), 107–112.
  26. Ogrinc, N., Košir, I.J., Spangenberg, J.E., Kidrič, J. (2003). The application of NMR and MS methods for detection of adulteration of wine, fruit juices and olive oil. A review. Anal. Bioanal. Chem., 376, 424–430.
  27. Piłat, B., Zadernowski, R., Bieniek, A. (2012). Chemical characteristics of different varieties of sea buckthorn. Bromat. Chem. Toksykol., 45(3), 897–901.
  28. Sabir, S.M., Maqsood, H., Hayat, H., Khan, M.Q., Khaliq, A. (2005). Elemental and nutritional analysis of sea buckthorn (Hippophae rhamnoides ssp. Turkestanica) berries of Pakistani origin. J. Med. Food., 8, 518–522.
  29. Sharma, V.K., Dwivedi, S.K., Awasthi, O.P., Verma, M.K. (2014). Variation in nutrient composition of sea buck-thorn (Hippophae rhamnoides L.) leaves collected from different locations of Ladakh. Indian J. Hort., 71(3), 421–423.
  30. Staniek, H., Król, E., Krejpcio, Z. (2006). Assessment of the content of iron, zinc and copper in the daily food
  31. diets in selected groups of population. ŻNTJ. Supl., 2(47), 342–347.
  32. Stój, A. (2011). Methods of detecting adulteration of wines. ŻNTJ., 2(75), 17–26.
  33. Suryakumar, G., Gupta, A. (2011). Medicinal and thera-peutic potential of Sea buckthorn (Hippophae rham-noides L.). J Ethnopharmacol., 138(8), 268–278.
  34. Szczepaniak, B., Górecka, D., Jędrusek-Golińska, A. (2002). Nutritional preference among children at pre-school age. Acta Sci. Pol. Technologia Alimentaria, 1(2), 101–107.
  35. Tiitinen, K.M., Yang, B.R., Haraldsson, G.G., Jonsdottir, S., Kallio, H.P. (2006). Fast analysis of sugars, fruit ac-ids, and vitamin C in sea buckthorn (Hippophae rham-noides L.) varieties. J. Agric. Food Chem., 54(7), 2508–2513.
  36. Tissato, F., Marzano, C., Porchia, M., Pellei, M., Santini, C. (2010). Copper in diseases and treatments, and cop-per-based anticancer strategies. Med. Res. Rev., 30(4), 708–749.
  37. Upadhyay, N.K., Yogendra Kumar, M.S., Gupta, A. (2010). Antioxidant, cytoprotective and antibacterial effects of sea buckthorn (Hippophae rhamnoides L.) leaves. Food Chem. Tox., 48, 3443–3448.
  38. Von Soest, P.J., Robertson, J.B., Lewis, B.A. (1991). Methods for diatery fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutri-tion. J. Dairy Sci., 74, 3583-3597.
  39. Vyskocil, A., Viau, C. (1999). Assessment of molybdenum toxicity in humans. J. Appl. Toxicol., 19, 185–192.
  40. Wlazły, A., Targoński, Z. (2014). Applying determined ratios of stable isotopes ratios in selected elements to evaluate authenticity of organically grown products. ŻNTJ., 1(92), 5–15.
  41. Zabłocka-Słowińska, K., Grajeta, H. (2012). The role of manganese in etiopathogenesis and prevention of se-lected diseases. Post. Hig. Med. Dośw., 66, 549–553.
  42. Zeb, A., Malook, I. (2009). Biochemical characterization of sea buckthorn (Hippophae rhamnoides L. spp. turke-stanica) seed. Afr. J. Biotechnol., 8(8), 1625–1629.
  43. Zołoteńka-Synowiec, M., Całyniuk, B., Malczyk, E., Mi-siarz, M., Maćków, J. (2013). Nutrition knowledge re-lated to dietary fiber for a selected group of adults. Piel. Zdr. Publ., 3(3), 233–240.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.