Skip to main navigation menu Skip to main content Skip to site footer

Vol. 22 No. 1 (2023)

Articles

The effect of foliar application of amino acids on some nutritional properties, antioxidant capacity and some other physiologic parameters of African marigold (Tagetes erecta L.), Taishan ‘Yellow’ and ‘Orange’

DOI: https://doi.org/10.24326/asphc.2023.4580
Submitted: February 24, 2022
Published: 2023-02-24

Abstract

African marigold (Tagetes erecta L.) is one of the most well-known ornamental, medicinal and edible flowers in the world. A factorial experiment based on completely randomized design with 20 treatments in 3 replications, 60 plots and 5 plants per plot were conducted in order to investigate the effect of amino acids on growth, nutritional parameters and antioxidant capacity in African marigold. Experimental treatments included two cultivars of African marigold (‘Yellow’ and ‘Orange’) and foliar application of three amino acids (arginine, glutamine and proline) each one at three levels (100, 500 and 1000 μM). Distilled water was used as control. The results showed that the application of amino acids increased plant height, display life, fresh weight and dry matter of flower, leaf total chlorophyll and petal carotenoid compared to the control in both African marigold cultivars. Petal protein content and malondialdehyde (MDA) were not affected by the above treatments, but the use of amino acids, especially arginine and proline, increased proline and calcium, zinc and iron in the petals of both African marigold cultivars. Treatments of 100 μM arginine and 1000 μM proline induced the highest vitamin C in both African marigold cultivars. In ‘Orange’ cultivar, the highest enzyme activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) belonged to 1000 μM proline and the highest peroxidase (POD) activity belonged to two treatments of 100 μM arginine and 1000 μM proline. In ‘Yellow’ cultivar, all three levels of arginine and proline together with 1000 μM glutamine significantly increased SOD and POD activity compared to other treatments. Also, the highest APX enzyme activity was recorded for 100 μM arginine. The results of the present study showed that external application of amino acids, especially arginine and proline, improved the nutritional properties of both African marigold cultivars by increasing the activity of antioxidants.

References

  1. Ansari, S., Hadavi, E., Salehi, M., Moradi, P. (2011). Application of microorganisms compared with nanoparticles of silver, humic acid and gibberellic acid on vase life of cut gerbera ‘Good Timing’. J. Ornam. Hortic. Plants., 1 (1), 27–33.
  2. Arora, A.V., Singh, S.S., Sindhu, D.N., Voleti, S.R. (2007). Oxidative stress mechanisms during flower senescence. Plant Stress Global Science Books, Japan, pp: 235.
  3. Abaspour Esfaden, M., Kalate Jari, S., Fatehi, F. (2019). The effect of salicylic acid and L-arginine on morpho-physiological properties and leaf nutrients of Catharanthus roseus under drought stress. J. Hortic. Sci. (Agric. Sci. Technol.), 33, 417–432. https://doi.org/10.22067/jhorts4.v33i3.73631
  4. Abdossi, V., Danaee, E. (2019). Effects of some amino acids and organic acids on enzymatic activity and longevity of Dianthus caryophyllus cv. Tessino at pre-harvest stage. J. Ornam. Plants, 9, 93–104. https://dorl.net/dor/20.1001.1.22516433.2019.9.2.2.7
  5. Abo Sedera, F., Bader, L.A., Rezk, S.M. (2010). Effect of NPK mineral fertilizer levels and foliar application with humic and amino acids on yield and quality of strawberry. Egypt. J. Basic Appl. Sci., 25, 54–169.
  6. Alici, E.H., Arabaci, G. (2016). Determination of SOD, POD, PPO and CAT enzyme activities in Rumex obtusifolius L. Ann. Res. Rev. Biol., 11, 1–7. https://doi.org/10.9734/ARRB/2016/29809 DOI: https://doi.org/10.9734/ARRB/2016/29809
  7. Anosheh, H.P., Emam, Y., Ashraf, M., Foolad, M.R. (2012). Exogenous application of salicylic acid and chlormequat chloride alleviates negative effects of drought stress in wheat. Adv. Stud. Biol., 4, 501–520.
  8. Bailey Serres, J., Mittler, R. (2006). The roles of reactive oxygen species in plant cells. Plant Physiol., 141, 311. https://doi.org/10.1104/pp.104.900191 DOI: https://doi.org/10.1104/pp.104.900191
  9. Bates, L.S., Waldren, S.P., Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205–207. https://doi.org/10.1007/BF00018060 DOI: https://doi.org/10.1007/BF00018060
  10. Bidaki, S., Tehranifar, A., Khorassani, R. (2018). Postharvest shelf life extension of fruits of two strawberry (Fragaria× ananassa Duch.) cultivars with amino acids application in soilless culture system. J. Sci. Technol. Greenhouse Cult., 2, 1–9. http://dx.doi.org/10.29252/ejgcst.9.2.1 DOI: https://doi.org/10.29252/ejgcst.9.2.1
  11. Calvo, P., Nelson, L., Kloepper, J. (2014). Agricultural uses of plant biostimulants. Plant Soil, 383, 3–41. https://doi.org/10.1007/s11104-014-2131-8 DOI: https://doi.org/10.1007/s11104-014-2131-8
  12. Croce, R., van Amerongen, H. (2014). Natural strategies for photosynthetic light harvesting. Nature Chem. Biol., 10, 492–501. https://doi.org/10.1038/nchembio.1555 DOI: https://doi.org/10.1038/nchembio.1555
  13. Croft, H., Chen, J.M. (2017). Leaf pigment content. Elsevier, Oxford, p. 26. http://dx.doi.org/10.1016/B978-0-12-409548-9.10547-0 DOI: https://doi.org/10.1016/B978-0-12-409548-9.10547-0
  14. El-Din, K.M.G., El-Wahed, M.S.A. (2005). Effect of some amino acids on growth and essential oil content of chamomile plant. Intl. J. Agric. Biol., 7, 376–380.
  15. Faten, S.A., Shaheen, A.M., Ahmed, A.A., Mahmoud, A.R. (2010). Effect of foliar application of amino acids as antioxidant on growth, yield and characteristics of squash. Res. J. Agric. Biol. Sci., 6, 583–588.
  16. Fawzy, Z., El-Shal, Z., Yunsheng, L., Zhu, O., Sawan, O. (2012). Response of garlic (Allium sativum L.) plants to foliar spraying of some bio-stimulants under sandy soil condition. J. Appl. Sci. Res., 8, 770–776.
  17. Fischer, W.N., André, B., Rentsch, D., Krolkiewicz, S., Tegeder, M., Breitkreuz, K., Frommer, W.B. (1998). Amino acid transport in plants. Trends Plant Sci., 3, 188–195. https://doi.org/10.1016/S1360-1385(98)01231-X DOI: https://doi.org/10.1016/S1360-1385(98)01231-X
  18. Foyer, C.H., Noctor, G. (2005). Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ., 28, 1056–1071. https://doi.org/10.1111/j.1365-3040.2005.01327.x DOI: https://doi.org/10.1111/j.1365-3040.2005.01327.x
  19. Giannopolitis, C., Ries, S. (1997). Superoxide dismutase. I: Occurrence in higher plant. Plant Physiol., 59, 309–314. https://doi.org/10.1104/pp.59.2.309 DOI: https://doi.org/10.1104/pp.59.2.309
  20. Ghafari, H., Tadayon, M.R., Razmjoo, J. (2018). Effect foliar of proline on some physiological indices of sugar beet (Beta vulgaris L.) to water deficit condition. J. Plant Proc. Funct., 7, 13–26. http://dorl.net/dor/20.1001.1.23222727.1397.7.26.2.1
  21. Guerra-Guimarães, L., Pinheiro, C., Chaves, I., Barros, D.R., Ricardo, C.P. (2016). Protein dynamics in the plant extracellular space. Proteomes, 4, 22. http://doi.org/10.3390/proteomes4030022 DOI: https://doi.org/10.3390/proteomes4030022
  22. Hasanuzzaman, M., Alam, M.M., Rahman, A., Hasanuzzaman, M., Nahar, K., Fujita, M. (2014). Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BioMed. Res. Intl., 1–17. https://doi.org/10.1155/2014/757219 DOI: https://doi.org/10.1155/2014/757219
  23. Heath, R.L., Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Arch. Biochem. Biophys., 125, 189–198. https://doi.org/10.1016/0003-9861(68)90654-1 DOI: https://doi.org/10.1016/0003-9861(68)90654-1
  24. Heldt, H.W., Piechulla, B. (2010). Plant biochemistry. Academic Press, 145.
  25. Hirose, T., Ackerly, D.D., Traw, M.B., Ramseier, D., Bazzaz, F.A. (1997). CO2 elevation, canopy photosynthesis and optimal leaf area index. Ecology, 78, 2339–2350. https://doi.org/10.1890/0012-9658(1997)078[2339:CECPAL]2.0.CO;2 DOI: https://doi.org/10.1890/0012-9658(1997)078[2339:CECPAL]2.0.CO;2
  26. In, B.C., Motomura, S., Inamoto, K., Doi, M., Mori, G. (2007). Multivariate analysis of relation between preharvest environmental factors, postharvest morphological and physiological factors and vase life of cut ‘Asomi Red’ roses. Jap. Soc. Hortic. Sci., 76, 66–72. https://doi.org/10.2503/jjshs.76.66 DOI: https://doi.org/10.2503/jjshs.76.66
  27. Jothi, D. (2018). Extraction of natural dyes from African marigold flower (Tagetes erecta L.) for textile coloration. Autex Res. J., 8, 49–53.
  28. Jubault, M., Hamon, C., Gravot, A., Lariagon, C., Delourme, R., Bouchereau, A., Manzanares-Dauleux, M.J. (2008). Differential regulation of root arginine catabolism and polyamine metabolism in club root-susceptible and partially resistant Arabidopsis genotypes. Plant Physiol., 146, 2008–2019. https://doi.org/10.1104/pp.108.117432 DOI: https://doi.org/10.1104/pp.108.117432
  29. Khan, S., Yu, H., Li, Q., Gao, Y., Noman Sallam, B., Wang, H., Liu, P., Jiang, W. (2019). Exogenous application of amino acids improves the growth and yield of lettuce by enhancing photosynthetic assimilation and nutrient availability. Agronomy, 9, 1–17. https://doi.org/10.3390/agronomy9050266 DOI: https://doi.org/10.3390/agronomy9050266
  30. Khattab, E.A., Afifi, M.H. (2009). Effect of proline and glycine betaine on canola plants grown under salinity stress condition. Modern J. Appl. Biol. Sci., 3, 42–51.
  31. Leghari, S.J., Wahocho, N.A., Laghari, G.M., Laghari, A.H., Bhabhan, G.M., Talpur, H.K., Bhutto, T.A., Wahocho, S.A., Lashari, A.A. (2016). Role of nitrogen for plant growth and development: a review. Adv. Environ. Biol., 10, 209–218.
  32. Madadkar Haghjou, M. (2013). Comparative study of some physiological characteristics (chlorophyll content, photosynthetic activity) in selection of Dunaliella sp. strains (isolated from Iranian waters). J. Cell Tiss., 4, 85–102.
  33. Mazumdar, B.C., Majumder, K. (2003). Methods on physicochemical analysis of fruits. Univ. College Agric., Calcutta Univ., 136–150.
  34. Mirzapour, M., Golchin, A., Khoshgoftarmanesh, A., Tehrani, M. (2020). Effect of amino acid and zinc application on uptake and transport of zinc and iron in rapeseed in nutrient solution culture. J. Crops Improv. (J. Agric.), 21, 379–392. https://doi.org/10.22059/jci.2019.280063.2204
  35. Moliner, C., Barros, L., Dias, M.I., López, V., Langa, E., Ferreira, I.C.F.R., Gómez-Rincón, C. (2018). Edible flowers of Tagetes erecta L. as functional ingredients: phenolic composition, antioxidant and protective effects on Caenorhabditis elegans. Nutrients, 10, 2–14. https://doi.org/10.3390/nu10122002 DOI: https://doi.org/10.3390/nu10122002
  36. Nawaz, K., Ashraf, M. (2010). Exogenous application of glycine betaine modulates activities of antioxidants in maize plants subjected to salt stress. J. Agron. Crop Sci., 196, 28–37. https://doi.org/10.1111/j.1439-037X.2009.00385.x DOI: https://doi.org/10.1111/j.1439-037X.2009.00385.x
  37. Neill, S., Desikan, R., Hancock, J.T. (2003). Nitric oxide signaling in plants. New Phytol., 159, 11–35. https://doi.org/10.1046/j.1469-8137.2003.00804.x DOI: https://doi.org/10.1046/j.1469-8137.2003.00804.x
  38. Porcel, R., Ruiz-Lozano, J.M. (2004). Arbuscular mycorrhizal influence on leaf water potential, solute accumulation and oxidative stress in soybean plants subjected to drought stress. J. Exp. Bot., 55, 1743–1750. https://doi.org/10.1093/jxb/erh188 DOI: https://doi.org/10.1093/jxb/erh188
  39. Qiu, X.M., Sun, Y.Y., Ye, X.Y., Li, Z.G. (2020). Signaling role of glutamate in plants. Front. Plant Sci., 10, 1743. https://doi.org/10.3389/fpls.2019.01743 DOI: https://doi.org/10.3389/fpls.2019.01743
  40. Raeisi, M., Farahani, L., Palashi, M. (2014). Changes of qualitative and quantitative properties of radish (Raphanus sativus L.) under foliar spraying through amino acid. Int. J. Biosci., 4, 463–468. http://dx.doi.org/10.12692/ijb/4.1.463-468 DOI: https://doi.org/10.12692/ijb/4.1.463-468
  41. Rengel, Z., Romheld, V. (2000). Root exudation and Fe uptake and transport in wheat genotypes differing in tolerance to Zn deficiency. Plant Soil, 222, 25–34. https://doi.org/10.1023/A:1004799027861 DOI: https://doi.org/10.1023/A:1004799027861
  42. Rezasefat Arbani, M., Kalateh Jari, S., Fatehi, F., Khalighi, A. (2020). The effect of humi-forthi and L-arginine amino acid on growth, physiological and biochemical characteristics of marigold (Tagetes erecta) under drought stress. Iran. J. Hortic. Sci. (Iran. J. Agric. Sci.), 51, 365–373. https://doi.org/10.22059/ijhs.2019.262454.1483
  43. Sadak, M.S., Mostafa, H.A. (2015). Physiological role of pre-sowing seed with proline on some growth, biochemical aspects, yield quantity and quality of two sunflower cultivars grown under seawater salinity stress. Sci. Agric., 9, 60–69. DOI: https://doi.org/10.15192/PSCP.SA.2015.1.9.6069
  44. Sadak, M.S.H., Abd El-Hamid, M.T., Schmidhalter, U. (2015). Effect of foliar application of amino acids on plant yield and physiological parameters in bean plants irrigated with seawater. Acta Biol. Colombiana, 20, 141–152. https://doi.org/10.15446/abc.v20n1.42865 DOI: https://doi.org/10.15446/abc.v20n1.42865
  45. Shafie, F., Bayat, H., Aminifard, M.H., Daghighi, S. (2020). Biostimulant effects of seaweed extract and amino acids on growth, antioxidants, and nutrient content of yarrow (Achillea millefolium L.) in the field and greenhouse conditions. Commun. Soil Sci. Plant Anal., 52, 964–975. https://doi.org/10.1080/00103624.2021.1872596 DOI: https://doi.org/10.1080/00103624.2021.1872596
  46. Shekari, G., Javanmardi, J.E. (2017). Effects of foliar application pure amino acid and amino acid containing fertilizer on broccoli (Brassica oleracea L. var. Italica) transplant. Crop Sci. Technol., 5, 280. http://dx.doi.org/10.4172/2329-8863.1000280 DOI: https://doi.org/10.4172/2329-8863.1000280
  47. Siddiqui, M.H., Al-Whaibi, M.H., Sakran, A.M., Ali, H.M., Basalah, M.O., Faisal, M., Alatar, A., Al-Amri, A.A. (2012). Calcium-induced amelioration of boron toxicity in radish. J. Plant Growth Reg., 61–71. https://doi.org/10.1007/s00344-012-9276-6 DOI: https://doi.org/10.1007/s00344-012-9276-6
  48. Singh, Y., Gupta, A., Kannojia, P. (2020). Tagetes erecta (marigold): a review on its phytochemical and medicinal properties. Curr. Med. Drug Res., 4, 1–7.
  49. Soroori, S., Danaee, E., Hemmati, K., Ladan Moghadam, A. (2021). Effect of foliar application of proline on morphological and physiological traits of Calendula officinalis L. under drought stress. J. Ornam. Plants, 11, 13–30. https://dorl.net/dor/20.1001.1.22516433.2021.11.1.1.8
  50. Souri, M.K., Hatamian, M. (2018). Amino chelates in plant nutrition: A review. J. Plant Nutr., 1–13. https://doi.org/10.1080/01904167.2018.1549671 DOI: https://doi.org/10.1080/01904167.2018.1549671
  51. Stijn, S., Jos, V., Roseline, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. Fems Microbiol. Rev., 31, 425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.x DOI: https://doi.org/10.1111/j.1574-6976.2007.00072.x
  52. Teixeira, W.F., Fagan, E.B., Soares, L.H., Soares, J.N., Reichardt, K., Neto, D.D. (2018). Seed and foliar application of amino acids improve variables of nitrogen metabolism and productivity in soybean crop. Front. Plant Sci., 9, 396. https://doi.org/10.3389/fpls.2018.00396 DOI: https://doi.org/10.3389/fpls.2018.00396
  53. Thomas, J., Mandal, A.K.A., Raj Kumar, R., Chrodia, A. (2009). Role of biologically active amino acid formulations on quality and crop productivity of tea (Camelia sp.). Int. J. Agric. Res., 4, 228–236. https://dx.doi.org/10.3923/ijar.2009.228.236 DOI: https://doi.org/10.3923/ijar.2009.228.236
  54. Trovato, M., Matioli, R., Costantino, P. (2008). Multiple roles of proline in plant stress tolerance and development. Rend. Lincei, 19, 325–346. https://doi.org/10.1007/s12210-008-0022-8 DOI: https://doi.org/10.1007/s12210-008-0022-8
  55. Winter, G., Todd, C.D., Trovato, M., Forlani, G., Funck, D. (2015). Physiological implications of arginine metabolism in plants. Front. Plant Sci., 6, 223–231. https://doi.org/10.3389/fpls.2015.00534 DOI: https://doi.org/10.3389/fpls.2015.00534
  56. Yan, Z., Guo, S., Shu, S., Sun, J., Tezuka, T. (2011). Effects of proline on photosynthesis, root reactive oxygen species (ROS) metabolism in two melon cultivars (Cucumis melo L.) under NaCl stress. Afr. J. Biotechnol., 10, 18381–18390. https://doi.org/10.5897/AJB11.1073 DOI: https://doi.org/10.5897/AJB11.1073
  57. Yaqoob, H., Akram, N.A., Iftikhar, S., Ashraf, M., Khalid, N., Sadiq, M., Alyemeni, M.N., Wijaya, L., Ahmad, P. (2019). Seed pretreatment and foliar application of proline regulate morphological, physio-biochemical processes and activity of antioxidant enzyme in plants of two cultivars of quinoa (Chenopodium quinoa Willd.). Plants, 8, 1–17. https://doi.org/10.3390/plants8120588 DOI: https://doi.org/10.3390/plants8120588
  58. Zulaikha, R. (2013). Effect of foliar spray of ascorbic acid, Zn, seaweed extracts (Sea) force and biofertilizers (EM-1) on vegetative growth and root growth of olive (Olea europaea L.) transplants cv. Hoj Blanca. Int. J. Pure Appl. Sci. Technol., 17, 79–89.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.