Skip to main navigation menu Skip to main content Skip to site footer

Vol. 14 No. 5 (2015)

Articles

SELECTED ASPECTS OF NITROGEN METABOLISM AND QUALITY OF FIELD-GROWN LETTUCE (Lactuca sativa L.) DEPENDING ON THE DIVERSIFIED FERTILIZATION WITH IODINE AND SELENIUM COMPOUNDS

Submitted: November 18, 2020
Published: 2015-10-31

Abstract

Iodine and selenium together fulfill important functional roles in organisms of humans and animals. Conducting simultaneous biofortification (enrichment) of plants with these elements is justified as combined endemic deficiency of I and Se (hidden hunger) is often encountered. Relatively little is known about the interaction between I and Se in plants, not only with respect to their accumulative efficiency, but also its influence on mineral nutrition or biological quality of crop. The study (conducted in 2012–2014) in-cluded soil fertilization of lettuce cv. ‘Valeska’ with I and Se in the following combina-tions: control, KI, KIO3, Na2SeO4, Na2SeO3, KI + Na2SeO4, KIO3 + Na2SeO4, KI + Na2SeO3, KIO3 + Na2SeO3. Iodine and selenium were applied twice: before sowing and as a top-dressing (each of 2.5 kg I·ha-1 + 0.5 kg Se·ha-1) – a total dose of 5 kg I·ha-1 and 1 kg Se·ha-1 was used. Diversified weather conditions significantly modified the impact fertilization with I and Se had on tested aspects of nitrogen metabolism and biological quality of lettuce – except for the lettuce heads mass and the sucrose content. Based on the results concerning average lettuce weight as well as the level of sugars, phenolic com-pounds, phenylpropanoids, flavonols and antioxidizing activity it was concluded that the application of Na2SeO4 alone or together with iodine acted as a stress factor for cultivated plants.

References

Blasco, B., Rios, J.J., Leyva, R., Cervilla, L.M., Sanchez-Rodriguez, E., Rubio-Wilhelmi, M.M., Rosales, M.A., Ruiz, J.M., Romero, L. (2010). Does iodine biofortification affect oxidative metabolism in lettuce plants? Biol. Trace Elem. Res., 142(3), 831–842, doi: 10.1007/s12011-010-8816-9.
Borowski, E., Hawrylak-Nowak, B., Michałek, S. (2014). The response of lettuce to fluorescent light and led light relative to different nitrogen nutrition of plants. Acta Sci. Pol., Hortorum Cultus, 13(5), 211–224.
Campbell, W.H. (1999). Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology. Ann. Rev. Plant Physiol. Plant Mol. Biol., 50, 277–303.
Chilimba, A.D.C., Young, S.D., Black, C.R., Meacham, M.C., Lammel, J., Broadley, M.R. (2012). Assessing residual availability of selenium applied to maize crops in Malawi. Field Crops Res., 134, 11–18, dx.doi.org/10.1016/j.fcr.2012.04.010.
Dai, J.L., Zhang, M., Hu, Q.H., Huang, Y.Z., Wang, R.Q., Zhu, Y.G. (2009). Adsorption and desorption of iodine by various Chinese soils: II. Iodide and iodate. Geoderma, 153, 130–135.
Dzida, K., Jarosz, Z., Michałojć, Z., Nurzyńska-Wierdak, R. (2012). The influence of diversified nitrogen and liming fertilization on the chemical composition of lettuce. Acta Sci. Pol., Hortorum Cultus, 11(3), 247–254.
Eurola, M., Alfthan, G., Aro, A., Ekholm, P., Hietaniemi, V., Rainio, H., Rankanen, R., Venäläinen, E.R. (2003). Results of the Finnish selenium monitoring program 2000–2001. Agrifood Research Reports, 36, 42 p.
Fordyce, F.M., Johnson, C.C., Navaratna, U.R.B., Appleton, J.D., Dissanayake, C.B. (2000). Selenium and iodine in soil, rice and drinking water in relation to endemic goitre in Sri Lanka. Sci. Total Environ., 263, 127–141.
GUS (2005). Ochrona Środowiska, 2005. Informacje i opracowanie statystyczne. Central Statistical Office of Poland. Warszawa.
Hawrylak-Nowak, B. (2013). Comparative effects of selenite and selenate on growth and seleni-um accumulation in lettuce plants under hydroponic conditions. Plant Growth Reg., 70(2), 149–157.
Hawrylak-Nowak, B., Matraszek, R., Pogorzelec, M. (2015). The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumu-lation in cucumber plants. Acta Physiol Plant., 37, 41 (13 page), doi: 10.1007/s11738-015-1788-9.
Hirschi, K.D. (2009). Nutrient biofortification of food crops. Annu. Rev. Nutr., 29, 401–421, doi: 10.1146/annurev-nutr-080508-141143.
Hong, C., Weng, H., Jilani, G., Yan, A., Liu, H., Xue, Z. (2012). Evaluation of iodide and iodate for adsorption-desorption characteristics and bioavailability in three types of soil. Biol. Trace Elem. Res., 146(2), 262–271.
Ishikawa, N.K., Uchida, S., Tagami, K. (2010). Iodine sorption and its chemical form in the soil-soil solution system in Japanese agricultural fields. 19th World Congress of Soil Science, Soil Solutions for a Changing Word. 1–6 August, Brisbane, Australia, 125–128.
Johanson, K.J. (2000). Iodine in soil. Technical Report. TR-00-21. Svensk Kärnbränslehantering AB, http://193.235.25.3/upload/publications/pdf/TR-00-21webb.pdf. – version 18-08-2012.
Kato, S., Wachi, T., Yoshihira, K., Nakagawa, T., Ishikawa, A., Takagi, D., Tezuka, A., Yoshida, H., Yoshida, S., Sekimoto, H., Takahashi, M. (2013). Rice (Oryza sativa L.) roots have iodate reduction activity in response to iodine. Front. Plant Sci, doi: 10.3389/fpls.2013.00227.
Kopsell, D.A., Kopsell, D.E. (2007). Selenium. In: Handbook of plant nutrition, Barker, A.V., Pilbeam, D.J. (eds). CRC Press Taylor & Francis Group, pp 515–549.
Korkina, L.G. (2007). Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell. Mol. Biol., 53(1), 15–25.
Komosa, A., Górniak, T. (2012). The effect of chloride on nutrient contents in fruits of green-house tomato (Lycopersicon esculentum Mill.) grown in rockwool. Acta Sci. Pol., Hortorum Cultus, 11(5), 43–53.
Mao, H., Wang, J., Wang, Z., Zan, Y., Lyons, G., Zou, C. (2014). Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plat-eau in China. J. Soil Sci. Plant Nut., 14(2), 459–470.
Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud., 15(4), 523–530.
Nath, T., Raha, P., Rakshit, A. (2010). Sorption and desorption behaviour of iodine in alluvial soils of Varanasi, India. Agricultura, 7, 9–14.
Nunes, A.C.S., Kalkmann, D.C., Aragão, F.J.L. (2009). Folate biofortification of lettuce by expression of a codon optimized chicken GTP cyclohydrolase I gene. Transgen. Res., 18(5), 661–667.
Pitura, K., Michałojć, Z. (2012). Influence of nitrogen doses on salt concentration, yield, biological value, and chemical composition of some vegetable plant species. Part I. Yield and biolog-ical value. Acta Sci. Pol., Hortorum Cultus, 11(6), 145–153.
Rakoczy, R. (2014). Foliar biofortification with iodine and selenium of lettuce (Lactuca sativa L.) in the hydroponic system as well as evaluation of iodine absorption in rats Wistar fed with let-tuce biofortified with iodine. Ph.D. Thesis. Institute of Plant Biology and Biotechnology, Fac-ulty of Biotechnology and Horticulture, Univ. of Agriculture in Krakow (in Polish).
Ren, Q., Fan, F., Zhang, Z., Zheng, X., DeLong, GR. (2008). An environmental approach to correcting iodine deficiency: Supplementing iodine in soil by iodination of irrigation water in remote areas. J. Trace Elem. Med. Biol., 22, 1–8.
Rhew, R.C., Østergaard, L., Saltzman, E.S., Yanofsky, M.F. (2003). Genetic control of methyl halide production in Arabidopsis. Curr. Biol., 13, 1809–1813, doi: http://dx.doi.org/10.1016/j.cub.2003.09.055.
Ríos, J.J., Blasco, B., Cervilla, L.M., Rubio-Wilhelmi, M.M., Rosales, M.A., Sánchez-Rodríguez, E., Romero, L., Ruiz, J.M. (2010). Nitrogen-use efficiency in relation to different forms and application rates of Se in lettuce plants. J. Plant Growth Reg., 29, 164–170, doi: 10.1007/s00344-009-9130-7.
Ríos, J.J., Rosales, M.A., Blasco, B., Cervilla, L.M., Romero, L., Ruiz, J.M. (2008). Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Sci. Hort., 116, 248–255, doi:10.1016/j.scienta.2008.01.008.
Roberts, S.K. (2006). Plasma membrane anion channels in higher plants and their putative func-tions in roots. New Phytol., 169, 647–666.
Sirtautas, R., Samuoliene, G., Brazaityte, A., Sakalauskaite, J., Sakalauskiene, S., Virsile, A., Jankauskiene, J., Vastakaite, V., Duchovskis, P. (2014). Impact of CO2 on quality of baby lettuce grown under optimized light spectrum. Acta Sci. Pol., Hortorum Cultus, 13(2), 109–118.
Smoleń, S., Kowalska, I., Sady, W. (2014a). Assessment of biofortification with iodine and selenium of lettuce cultivated in the NFT hydroponic system. Sci. Hort., 166, 9–16. doi: dx.doi.org/10.1016/j.scienta.2013.11.011.
Smoleń, S., Sady, W., Ledwożyw-Smoleń, I., Strzetelski, P., Liszka-Skoczylas, M., Rożek, S. (2014b). Quality of fresh and stored carrots depending on iodine and nitrogen fertilization. Food Chem., 159, 316–322. http://dx.doi.org/10.1016/j.foodchem.2014.03.0 24.
Terry, N., Carlson, C., Raab, T.K., Zayed, A.M. (1992). Rates of selenium volatilization among crop species. J. Environ. Qual., 21, 341–344.
Voogt, W., Jackson, W.A. (2010). Perchlorate, nitrate, and iodine uptake and distribution in lettuce (Lactuca sativa L.) and potential impact on background levels in humans. J. Agric. Food Chem., 58, 12192–12198.
Voogt, W., Holwerda, H.T., Khodabaks, R. (2010). Biofortification of lettuce (Lactuca sativa L.) with iodine: the effect of iodine form and concentration in the nutrient solution on growth, de-velopment and iodine uptake of lettuce grown in water culture. J. Sci. Food Agric., 90, 906–913, doi: 10.1002/jsfa.3902.
White, P.J., Broadley, M.R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol., 182(1), 49–84.
Zhu, Y.G., Huang, Y., Hu, Y., Liu, Y., Christie, P. (2004). Interactions between selenium and iodine uptake by spinach (Spinacia oleracea L.) in solution culture. Plant Soil, 261, 99–105.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >>